DATA VALIDATION REPORT - Level III Review

SDG No.:	218081812+13+14	Analysis:	Explosives and Metals	
Laboratory:	GCAL	Project:	Williston LTA	
Reviewer:	Naoum Tavantzis	Date:	October 24 th , 2018	

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the specifics of the analytical method referenced and provisions of the approved project-specific QAPP; and, qualified according to the USEPA CLP National Functional Guidelines for Organic and Inorganic (January 2017) Superfund Data Review. Modifications reflect the level of review requested, the specifications of the project-specific QAPP, and the specifics of the analytical methods employed.

Major

Anomalies:

During the explosives analysis, the following laboratory control spike pairs (LCS/LCSD) displayed percent recoveries outside the laboratory quality control (QC) limits:

	Preparation	QC Limits	Analyta	LCS	LCSD
	Batch	(%)	Allalyte	Recovery (%)	Recovery (%)
ſ		80-116	1,3,5-Trinitrobenzene	47	41
		73-119	1,3-Dinitrobenzene	50	43
		71-120	2,4,6-Trinitrobenzene	42	39
		75-121	2,4-Dinitrotoluene	26	32
		79-117	2,6-Dinitrotoluene	105	56
		71-123	2-Amino-4,6-dinitrotoluene	37	34
		84-120	2-Nitrotoluene	44	35
		86-118	3,5-Dinitroaniline	39	34
	642698	67-129	3-Nitrotoluene	42	35
		64-127	4-Amino-2,6-dinitrotoluene	38	34
		71-124	4-Nitrotoluene	47	60
		74-124	HMX	39	34
		80-128	Nitrobenzene	39	34
		73-124	Nitroglycerin	37	32
		72-128	PETN	31	30
		67-129	RDX	42	42
		68-135	Tetryl	0	0
ſ		80-116	1,3,5-Trinitrobenzene	121	119
		73-119	1,3-Dinitrobenzene	126	111
	613313	67-129	3-Nitrotoluene	113	145
	043342	71-124	4-Nitrotoluene	108	354
		72-128	PETN	116	166
		68-135	Tetryl	0	0

The field sample results associated with the 0% recovery for tetryl were non-detect and were qualified R,l. The field sample results associated with the remaining percent recoveries less than the lower QC limits were non-detect and were qualified UJ,l. The field sample results associated with the positive biases were non-detect; no data qualifying action was taken. In addition, the LCS/LCSD displayed several relative percent difference (RPD) anomalies greater than the laboratory QC limit of 20%. The associated field sample results were non-detect; no data qualifying action was required.

Minor

Anomalies:

During the explosives analysis, the LCSD prepared in QC batch 642698 displayed a percent recovery less than the lower QC limit of 50% for surrogate 1,2-dinitrobenzene at 45%. All field samples displayed surrogate percent recoveries within control limits; no data qualifying action is taken based on QC sample surrogate percent recovery anomalies. The matrix spike (MS) performed on field sample WIL02DA02A, prepared in QC batch 643342, displayed a percent recovery less than the lower QC limit of 74% for HMX at 61%. The associated parent sample result was non-detect and was qualified UJ,m. In addition, the matrix spike pairs (MS/MSD) performed on field sample WIL02DA02A in QC batches 642698 and 643342 displayed several RPDs greater than the QC laboratory QC limit of 20%. The associated parent sample results were non-detect; no data qualifying action was required. The field sample results were non-detect and was had expired. The associated field sample results were non-detect and were qualified UJ,h, unless previously qualified due to a LCS or MS percent recovery anomaly.

During the metals analysis, the method blank prepared in QC batch 642222 displayed a detection greater than the limit of detection for zinc at 518 μ g/Kg. The associated field sample results were positive and were greater than five times the concentration found in the blank; no data qualifying action was required. The equipment blank WIL03IS00 displayed concentrations greater than the DL for antimony at 0.74 μ g/L and copper at 0.26 μ g/L. The associated field sample results were positive and were greater than five times the concentration found in the blank; no data qualifying action was required. The equipment blank WIL03IS00 displayed concentrations greater than the DL for antimony at 0.74 μ g/L and copper at 0.26 μ g/L. The associated field sample results were positive and were greater than five times the concentration found in the blank; no data qualifying action was required. The following MS/MSD displayed percent recoveries outside the quality QC limits:

Parent Sample	Preparation Batch	Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)
WIL02DA02A	642222	Antimony	70 104	7	5
	642442	Anumony	12-124	11	12
WIL01IS02	042442	Copper	84-119	132	115
	642531	Antimony	72-124	7	8

The post-digestion spikes performed on these parent samples displayed percent recoveries within laboratory QC limits. The field sample results associated with the positive bias were positive and were qualified J+,m. The field sample results associated with the negative biases were non-detect and were qualified UJ,m. The serial dilution performed on field sample WIL02DA02A in analytical sequence 642309 displayed a percent difference greater than the QC limit of 10% for zinc at 10.9%. The associated field sample results were positive and were qualified J,s.

Correctable Anomalies:

omalies: None.

Comments: On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were within acceptable limits. Except for those data flagged "R", all data are usable, as qualified, for their intended purpose based on the data reviewed.

Signed:

Naoum Tavantzis

Williston LTA

Job: 60520956

Laboratory: GCAL SDG#: 217102040

Sample ID	Client ID	Sample Type	Sample Date	Matrix	8330B	Metals
21808181206	WIL02DA02A	Field Sample	8/16/2018	Discrete Soil	х	х
21808181213						
21808181209	WIL02DA01A	Field Sample	8/16/2018	Discrete Soil	х	х
21808181216						
21808181210		Field Duplicate	8/16/2018	Discrete Soil	v	v
21808181217	WILUZDAUID	Tielu Duplicate	0/10/2010	Discrete Soli	^	^
21808181301	WIL03IS01	Field Sample	8/14/2018	Incremental Soil		Х
21808181302	WIL01IS02	Field Duplicate	8/14/2018	Incremental Soil		Х
21808181303	WIL03IS00	Equipment Blank	8/16/2018	Incremental Soil		х
21808181304	WIL04IS03	Field Triplicate	8/15/2018	Incremental Soil		Х
21808181305	WIL04IS01	Field Sample	8/15/2018	Incremental Soil		Х
21808181306	WIL04IS02	Field Duplicate	8/15/2018	Incremental Soil		Х
21808181307	WIL03IS03	Field Triplicate	8/14/2018	Incremental Soil		Х
21808181308	WIL03IS02	Field Duplicate	8/14/2018	Incremental Soil		Х
21808181401	WIL02IS01	Field Sample	8/15/2018	Incremental Soil	х	Х
21808181404	WIL02IS02	Field Duplicate	8/15/2018	Incremental Soil	Х	Х
21808181405	WIL01IS03	Field Triplicate	8/14/2018	Incremental Soil		Х
21808181406	WIL01IS01	Field Sample	8/14/2018	Incremental Soil		Х
21808181407	WIL02IS03	Field Triplicate	8/15/2018	Incremental Soil	Х	Х

Client Sample Date	e ID:			WIL01I 8/14/ ⁻	S01 18	WIL01IS02 8/14/18	2	WIL01I 8/14/1	S03 18					
	Units	RL	5x LOQ	Sample	Conc	Duplicate Conc		Triplicate	Conc	Average	% RSD	Average Deviation	2x LOQ	Pass/ Fail
Metals														
Antimony	mg/Kg	0.855	4.28	0.422	U	0.427	U	0.383	U	0.411	4.82%	0.0185	1.71	Pass
Copper	mg/Kg	0.427	2.14	23.8		21.0		24.3		23.0	6.30%	1.36	0.854	Pass
Lead	mg/Kg	0.427	2.14	46.5		63.5		69.1		59.7	16.1%	8.80	0.854	Pass
Zinc	mg/Kg	8.55	42.8	67.3		61.2		64.5		64.3	3.88%	2.09	17.1	Pass

Control limit

[sample Average]>5xLOQ use 30%

Client Sample Date	e ID:			WIL011 8/14/	IS01 18	WIL01IS02 8/14/18	2	WIL01IS 8/14/18	03 }					
	Units	RL	5x LOQ	Sample	Conc	Duplicate Conc		Triplicate C	Conc	Average	% RSD	Average Deviation	2x LOQ	Pass/ Fail
Explosives							All	non-detect						
Metals														
Antimony	mg/Kg	0.937	4.69	0.469	U	0.453	U	0.468	U	0.463	1.58%	0.00689	1.874	Pass
Copper	mg/Kg	0.469	2.35	38.4		33.9		35.6		36.0	5.16%	1.62	0.938	Pass
Lead	mg/Kg	0.469	2.35	15.9		15.1		15.7		15.6	2.18%	0.311	0.938	Pass
Zinc	mg/Kg	9.37	46.9	88.5		77.4		81.4		82.4	5.57%	4.04	18.74	Pass

Control limit

[sample Average]>5xLOQ use 30%

Client Sample Date	e ID:			WIL03I 8/14/ ⁻	S01 18	WIL03IS02 8/14/18	2	WIL03IS 8/14/1	603 8					
	Units	RL	5x LOQ	Sample	Conc	Duplicate Conc		Triplicate	Conc	Average	% RSD	Average Deviation	2x LOQ	Pass/ Fail
Metals														
Antimony	mg/Kg	1.13	5.65	0.417	U	0.423	U	0.564	U	0.468	14.5%	0.0640	2.26	Pass
Copper	mg/Kg	0.564	2.82	27.3		23.1		35.7		28.7	18.3%	4.67	1.13	Pass
Lead	mg/Kg	0.564	2.82	14.7		14.3		22.7		17.2	22.5%	3.64	1.13	Pass
Zinc	mg/Kg	11.3	56.5	72.9		66.9		81.7		73.8	8.23%	5.24	22.6	Pass

Control limit

[sample Average]>5xLOQ use 30%

Client Sample Date	e ID:			WIL04I 8/15/ ⁻	S01 18	WIL04IS02 8/15/18	2	WIL0418 8/15/1	503 8					
	Units	RL	5x LOQ	Sample	Conc	Duplicate Conc		Triplicate	Conc	Average	% RSD	Average Deviation	2x LOQ	Pass/ Fail
Metals														
Antimony	mg/Kg	0.773	3.87	0.379	U	0.387	U	0.386	U	0.384	0.927%	0.00333	1.546	Pass
Copper	mg/Kg	0.387	1.94	14.9		14.4		15.4		14.9	2.74%	0.333	0.774	Pass
Lead	mg/Kg	0.387	1.94	7.11		6.66		7.26		7.01	3.64%	0.233	0.774	Pass
Zinc	mg/Kg	7.73	38.7	56.4		51.1		56.5		54.7	4.61%	2.38	15.46	Pass

Control limit

[sample Average]>5xLOQ use 30%

Williston 218081812 Duplicate

Client Sample ID:				WI02SA	02A	WI02SA	02B				
Date Sa	mpled:			8/16/1	8	8/16/1	8				
	Units	LOQ	5x LOQ	Sampl Conc	e	Duplica Conc	ate ;	%RPD	Delta	2x LOQ	Pass/ Fail
Explosives					All	Non-dete	ct				
Metals											
Antimony	mg/Kg	1.15	5.8	0.574	U	0.535	U	7.0%	0.039	2.3	Pass
Copper	mg/Kg	0.574	2.9	35.4		38.4		8.1%	3.0	1.1	Pass
Lead	mg/Kg	0.574	2.9	18.9		17.3		8.8%	1.6	1.1	Pass
Zinc	mg/Kg	11.5	58	101		98.50		2.5%	2.5	23	Pass

Control limit [sample]>5xLOQ use 30% [sample]<5xLOQ use Delta<2xLOQ

Report No:	218081812		Client Sample ID:	WIL02DA02A			
Collect Date:	08/16/18 Time: 1020		GCAL Sample ID:	21808181206		_	
Matrix:	Solid % Moisture: NA		Instrument ID:	HPLC3			
Sample Amt:	10.3 g		Lab File ID:	2180912\A64			
Injection Vol.:	1.0	(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000	(µL)	Dilution Factor:	1	Analyst:	MEG	_
Prep Date:	08/25/18		Analysis Date:	09/13/18	Time:	0540	
Prep Batch:	642698		Analytical Batch:	643776			
Prep Method:	8330B		Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	97.1	UQ	40.8	97.1	194
99-65-0	1,3-Dinitrobenzene	97.1	UQ	74.8	97.1	194
118-96-7	2,4,6-Trinitrotoluene	97.1	UQ	49.5	97.1	194
121-14-2	2,4-Dinitrotoluene	97.1	UQ	96.1	97.1	194
606-20-2	2,6-Dinitrotoluene	97.1	UQ	59.2	97.1	194
35572-78-2	2-Amino-4,6-dinitrotoluene	97.1	UQ	95.1	97.1	194
88-72-2	2-Nitrotoluene	97.1	UQJ	62.1	97.1	194
618-87-1	3,5-Dinitroaniline	97.1	UQ	80.6	97.1	194
99-08-1	3-Nitrotoluene	146	UQ	121	146	194
19406-51-0	4-Amino-2,6-dinitrotoluene	97.1	UQ	74.8	97.1	194
99-99-0	4-Nitrotoluene	97.1	UQJ	74.8	97.1	194
2691-41-0	HMX	97.1	UQ	25.2	97.1	194
98-95-3	Nitrobenzene	97.1	UQ	35.0	97.1	194
55-63-0	Nitroglycerin	97.1	UQ	71.8	97.1	194
78-11-5	Pentaerythritol Tetranitrate	146	UQ	118	146	194
121-82-4	RDX	97.1	UQ	17.5	97.1	194
479-45-8	Tetryl B, I	97.1	UQJ	39.8	97.1	194

FORM | ORG-1

Report No:	218081812				Client Sample ID:	WIL02DA02A	(RE)		
Collect Date:	08/16/18	Time:	1020		GCAL Sample ID:	21808181213			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10.1	<u>g</u>			Lab File ID:	2180912\A72			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18				Analysis Date:	09/13/18	Time:	0818	
Prep Batch:	643342				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE		DEQUIT	0	DI	100	100
99-35-4	135-Trinitrobenzene	1	00 0		11 G	LOD	100
99-65-0	1.3-Dinitrobenzene	h	99.0		76.2	99.0	190
118-96-7	2,4,6-Trinitrotoluene		99.0	U	50.5	99.0	198
121-14-2	2,4-Dinitrotoluene		99.0	U	98.0	99.0	198
606-20-2	2,6-Dinitrotoluene		99.0	UJ	60.4	99.0	198
35572-78-2	2-Amino-4,6-dinitrotoluene	$\overline{}$	99.0	U	97.0	99.0	198
88-72-2	2-Nitrotoluene	1	99.0	U	63.4	99.0	198
618-87-1	3,5-Dinitroaniline		99.0	U	82.2	99.0	198
99-08-1	3-Nitrotoluene		149	UQ	124	149	198
19406-51-0	4-Amino-2,6-dinitrotoluene		99.0	U	76.2	99.0	198
99-99-0	4-Nitrotoluene		99.0	UQ	76.2	99.0	198
2691-41-0	HMX US.	\sim	99.0	UJ	25.7	99.0	198
98-95-3	Nitrobenzene US	h	99.0	N	35.6	99.0	198
55-63-0	Nitroglycerin		99.0	U	73.3	99.0	198
78-11-5	Pentaerythritol Tetranitrate		149	UQ	121	149	198
121-82-4	RDX		99.0	U	17.8	99.0	198
479-45-8	Tetryl R		99.0	UQ	40.6	99.0	198

FORM | ORG-1

Report No:	218081812				Client Sample ID:	WIL02DA01A			
Collect Date:	08/16/18	Time:	0930		GCAL Sample ID:	21808181209			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10.5	<u>g</u>			Lab File ID:	2180912\A67			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/25/18				Analysis Date:	09/13/18	Time:	0639	
Prep Batch:	642698				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	95.2	υα	40.0	95.2	190
99-65-0	1,3-Dinitrobenzene	95.2	UQ	73.3	95.2	190
118-96-7	2,4,6-Trinitrotoluene	95.2	UQ	48.6	95.2	190
121-14-2	2,4-Dinitrotoluene	95.2	UQ	94.3	95.2	190
606-20-2	2,6-Dinitrotoluene	95.2	UQ	58.1	95.2	190
35572-78-2	2-Amino-4,6-dinitrotoluene	95.2	UQ	93.3	95.2	190
88-72-2	2-Nitrotoluene	95.2	UQ	61.0	95.2	190
618-87-1	3,5-Dinitroaniline	95.2	UQ	79.0	95.2	190
99-08-1	3-Nitrotoluene	143	UQ	119	143	190
19406-51-0	4-Amino-2,6-dinitrotoluene	95.2	UQ	73.3	95.2	190
99-99-0	4-Nitrotoluene	95.2	UQ	73.3	95.2	190
2691-41-0	НМХ	95.2	UQ	24.8	95.2	190
98-95-3	Nitrobenzene	95.2	UQ	34.3	95.2	190
55-63-0	Nitroglycerin	95.2	UQ	70.5	95.2	190
78-11-5	Pentaerythritol Tetranitrate	143	UQ	116	143	190
121-82-4	RDX	95.2	UQ	17.1	95.2	190
479-45-8	Tetryl 2.1	95.2	UQ	39.0	95.2	190

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	WIL02DA01A	(RE)		
Collect Date:	08/16/18	Time:	0930		GCAL Sample ID:	21808181216			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10.1	g			Lab File ID:	2180912\A75			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18				Analysis Date:	09/13/18	Time:	0917	
Prep Batch:	643342				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CAS	ANALYTE		RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitropenzene	Sih	99.0	UQ	41.6	99.0	198
99-65-0	1,3-Dinitrobenzene	1	99.0	U	76.2	99.0	198
118-96-7	2,4,6-Trinitrotoluene		99.0	U	50.5	99.0	198
121-14-2	2,4-Dinitrotoluene		99.0	U	98.0	99.0	198
606-20-2	2,6-Dinitrotoluene		99.0	U	60.4	99.0	198
35572-78-2	2-Amino-4,6-dinitrotoluene		99.0	U	97.0	99.0	198
88-72-2	2-Nitrotoluene		99.0	U	63.4	99.0	198
618-87-1	3,5-Dinitroaniline	\Box	99.0	U	82.2	99.0	198
99-08-1	3-Nitrotoluene		149	UQ	124	149	198
19406-51-0	4-Amino-2,6-dinitrotoluene		99.0	U	76.2	99.0	198
99-99-0	4-Nitrotoluene		99.0	UQ	76.2	99.0	198
2691-41-0	НМХ		99.8	U	25.7	99.0	198
98-95-3	Nitrobenzene	T	99.0	U	35.6	99.0	198
55-63-0	Nitroglycerin		99.0	U	73.3	99.0	198
78-11-5	Pentaerythritol Tetranitrate		149	Va	121	149	198
121-82-4	RDX	V	99.0	U V	17.8	99.0	198
479-45-8	Tetryl	31	99.0	UQ	40.6	99.0	198

Use instral reputs reputs

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	WIL02DA01B			
Collect Date:	08/16/18	Time:	0935		GCAL Sample ID:	21808181210			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180912\A68			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/25/18				Analysis Date:	09/13/18	Time:	0659	
Prep Batch:	642698				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene US,	100	UQ	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	UQ	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	UQ	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	UQ	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	UQ	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	UQ	98.0	100	200
88-72-2	2-Nitrotoluene	100	UQ	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	UQ	83.0	100	200
99-08-1	3-Nitrotoluene	150	UQ	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	UQ	77.0	100	200
99-99-0	4-Nitrotoluene	100	UQ	77.0	100	200
2691-41-0	HMX	100	UQ	26.0	100	200
98-95-3	Nitrobenzene	100	UQ	36.0	100	200
55-63-0	Nitroglycerin	100	UQ	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	UQ	122	150	200
121-82-4	RDX	100	UQ	18.0	100	200
479-45-8	Tetryl 2,1	100	UQ	41.0	100	200

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	WIL02DA01B	(RE)		
Collect Date:	08/16/18	Time:	0935		GCAL Sample ID:	21808181217			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10.1	9			Lab File ID:	2180912\A76			
Injection Vol.:	1.0		<u> </u>	(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18				Analysis Date:	09/13/18	Time:	0937	
Prep Batch:	643342				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE		RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	5.h	99.0	UQ	41.6	99.0	198
99-65-0	1,3-Dinitrobenzene	1	99.0	U	76.2	99.0	198
118-96-7	2,4,6-Trinitrotoluene		99.0	U	50.5	99.0	198
121-14-2	2,4-Dinitrotoluene		99.0	U	98.0	99.0	198
606-20-2	2,6-Dinitrotoluene		99.0	U	60.4	99.0	198
35572-78-2	2-Amino-4,6-dinitrotoluene		99.0	U	97.0	99.0	198
88-72-2	2-Nitrotoluene	$\overline{\mathbf{N}}$	99.0	U	63.4	99.0	198
618-87-1	3,5-Dinitroaniline	$\overline{77}$	99.0	U	82.2	99.0	198
99-08-1	3-Nitrotoluene		149	UQ	124	149	198
19406-51-0	4-Amino-2,6-dinitrotoluene		99.0	U	76.2	99.0	198
99-99-0	4-Nitrotoluene		99.0	UQ	76.2	99.0	198
2691-41-0	НМХ		99.0	U	25.7	99.0	198
98-95-3	Nitrobenzene		99.8	U	35.6	99.0	198
55-63-0	Nitroglycerin		99.0	U	73.3	99.0	198
78-11-5	Pentaerythritol Tetranitrate		149	UQ	121	149	198
121-82-4	RDX	V	99.0	V	17.8	99.0	198
479-45-8	Tetryl	2.1	99.0	UQ	40.6	99.0	198

Use 1+3 mar 1+3 MAX 118 war 118

FORM | ORG-1

Report No:	218081814		Client Sample ID:	WIL02IS01			
Collect Date:	08/15/18 Time: 1200		GCAL Sample ID:	21808181401			
Matrix:	Solid % Moisture: NA		Instrument ID:	HPLC3			
Sample Amt:	10.1 g		Lab File ID:	2180830\A22			
Injection Vol.:	1.0	(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000	(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/24/18		Analysis Date:	08/30/18	Time:	1741	
Prep Batch:	642680		Analytical Batch:	643050			
Prep Method:	8330B		Analytical Method:	EPA 8330B			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	99.0	U	41.6	99.0	198
99-65-0	1,3-Dinitrobenzene	99.0	U	76.2	99.0	198
118-96-7	2,4,6-Trinitrotoluene	99.0	U	50.5	99.0	198
121-14-2	2,4-Dinitrotoluene	99.0	U	98.0	99.0	198
606-20-2	2,6-Dinitrotoluene	99.0	U	60.4	99.0	198
35572-78-2	2-Amino-4,6-dinitrotoluene	99.0	U	97.0	99.0	198
88-72-2	2-Nitrotoluene	99.0	U	63.4	99.0	198
618-87-1	3,5-Dinitroaniline	99.0	U	82.2	99.0	198
99-08-1	3-Nitrotoluene	149	U	124	149	198
19406-51-0	4-Amino-2,6-dinitrotoluene	99.0	U	76.2	99.0	198
99-99-0	4-Nitrotoluene	99.0	υα	76.2	99.0	198
2691-41-0	HMX	99.0	U	25.7	99.0	198
98-95-3	Nitrobenzene	99.0	U	35.6	99.0	198
55-63-0	Nitroglycerin	99.0	U	73.3	99.0	198
78-11-5	Pentaerythritol Tetranitrate	149	U	121	149	198
121-82-4	RDX	99.0	U	17.8	99.0	198
479-45-8	Tetryl	99.0	U	40.6	99.0	198

Report No:	218081814				Client Sample ID:	WIL02IS02			
Collect Date:	08/15/18	Time:	1210		GCAL Sample ID:	21808181404			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10.5	g		,	Lab File ID:	2180830\A25			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Anaiyst:	MEG	
Prep Date:	08/24/18				Analysis Date:	08/30/18	Time:	1840	
Prep Batch:	642680				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	95.2	U	40.0	95.2	190
99-65-0	1,3-Dinitrobenzene	95.2	U	73.3	95.2	190
118-96-7	2,4,6-Trinitrotoluene	95.2	U	48.6	95.2	190
121-14-2	2,4-Dinitrotoluene	95.2	U	94.3	95.2	190
606-20-2	2,6-Dinitrotoluene	95.2	U	58.1	95.2	190
35572-78-2	2-Amino-4,6-dinitrotoluene	95.2	U	93.3	95.2	190
88-72-2	2-Nitrotoluene	95.2	U	61.0	95.2	190
618-87-1	3,5-Dinitroaniline	95.2	U	79.0	95.2	190
99-08-1	3-Nitrotoluene	143	U	119	143	190
19406-51-0	4-Amino-2,6-dinitrotoluene	95.2	U	73.3	95.2	190
99-99-0	4-Nitrotoluene	95.2	UQ	73.3	95.2	190
2691-41-0	HMX	95.2	U	24.8	95.2	190
98-95-3	Nitrobenzene	95.2	U	34.3	95.2	190
55-63-0	Nitroglycerin	95.2	U	70.5	95.2	190
78-11-5	Pentaerythritol Tetranitrate	143	U	116	143	190
121-82-4	RDX	95.2	U	17.1	95.2	190
479-45-8	Tetryl	95.2	U	39.0	95.2	190

Report No:	218081814				Client Sample ID:	WIL02IS03			
Collect Date:	08/15/18	Time:	1220		GCAL Sample ID:	21808181407			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180830\A26			
Injection Vol.:	1.0		,	(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/24/18				Analysis Date:	08/30/18	Time:	1900	
Prep Batch:	642680				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	υ	77.0	100	200
99-99-0	4-Nitrotoluene	100	UQ	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

Report No:	218081812			Client Sample ID:	WIL02DA02A				
Collect Date:	08/16/18	Time:	1020	GCAL Sample ID:	21808181206	i			
Matrix:	Solid	% Solids:	69.73	Instrument ID:	ICPMS2				
Sample Amt:	1.25	g		Lab File ID:	2180820B_M	S2.b\121277	SMPL.d		
Prep Vol.:	50		(mL)	Dilution Factor:	10	Analyst:	LWZ		
Prep Date:	08/20/18			Analysis Date:	08/20/18	Time:	1802		
Prep Batch:	642222			Analytical Batch:	642309				
Prep Method:	3050B			Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	574 US m	ug/kg	U	287	574	1150
Copper	35400	ug/kg		143	287	574
Lead	18900	ug/kg		143	287	574
Zinc	101000 55	ug/kg		2870	5740	11500

Report No:	218081812	Client Sample ID:	WIL02DA01A
Collect Date:	08/16/18 Time: 0930	GCAL Sample ID:	21808181209
Matrix:	Solid % Solids: 70.44	Instrument ID:	ICPMS2
Sample Amt:	1.45 g	Lab File ID:	2180820B_MS2.b\121282SMPL.d
Prep Vol.:	50 (mL)	Dilution Factor:	10 Analyst: LWZ
Prep Date:	08/20/18	Analysis Date:	08/20/18 Time: 1820
Prep Batch:	642222	Analytical Batch:	642309
Prep Method:	3050B	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	490 U.S.M	ug/kg	U	245	490	979
Copper	39300	ug/kg		122	245	490
Lead	17600	ug/kg		122	245	490
Zinc	98900 5.3	ug/kg		2450	4900	9790

Report No:	218081812		Client Sample ID:	WIL02DA01B				
Collect Date:	08/16/18	Time: 0935	GCAL Sample ID:	21808181210				
Matrix:	Solid	% Solids: 70.26	Instrument ID:	ICPMS2				
Sample Amt:	1.33	g	Lab File ID:	2180820B_MS	S2.b\121283	SMPL.d		
Prep Vol.:	50	(mL)	Dilution Factor:	10	Analyst:	LWZ		
Prep Date:	08/20/18		Analysis Date:	08/20/18	Time:	1824		
Prep Batch:	642222		Analytical Batch:	642309				
Prep Method:	3050B		Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	535 USm	ug/kg	U	268	535	1070
Copper	38400	ug/kg		134	268	535
Lead	17300	ug/kg		134	268	535
Zinc	98500 5,5	ug/kg		2680	5350	10700

Report No:	218081813	Client Sample ID:	WIL03IS01
Collect Date:	08/14/18 Time: 1600	GCAL Sample ID:	21808181301
Matrix:	Solid % Solids: 88.78	Instrument ID:	ICPMS2
Sample Amt:	1.35 g	Lab File ID:	2180828B_MS2.b\1841SMPL_2180828A_MS2.D
Prep Vol.:	50 (mL)	Dilution Factor:	10 Analyst: LWZ
Prep Date:	08/25/18	Analysis Date:	08/28/18 Time: 1305
Prep Batch:	642531	Analytical Batch:	642829
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	417 USm	ug/kg	U	209	417	834
Copper	27300	ug/kg		104	209	417
Lead	14700	ug/kg		104	209	417
Zinc	72900	ug/kg		2090	4170	8340

Report No:	218081813		Client Sample ID:	WIL01IS02			
Collect Date:	08/14/18 Time:	1350	GCAL Sample ID:	21808181302			
Matrix:	Solid % Solids	93.58	Instrument ID:	ICPMS1			
Sample Amt:	1.25 g		Lab File ID:	2180823A_MS1.b\038SMPL.d			<u> </u>
Prep Vol.:	50	(mL)	Dilution Factor:	10	Analyst:	LWZ	
Prep Date:	08/22/18		Analysis Date:	08/23/18	Time:	1209	
Prep Batch:	642442		Analytical Batch:	642536			
Prep Method:	EPA 3050B \ ISM		Analytical Method:	EPA 6020B			

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	427 USm	ug/kg	U	214	427	855
Copper	21000 Sr.m	ug/kg		107	214	427
Lead	63500	ug/kg		107	214	427
Zinc	61200	ug/kg		2140	4270	8550

Report No:	218081813	Client Sample ID:	WIL03IS00
Collect Date:	08/16/18 Time: 0820	GCAL Sample ID:	21808181303
Matrix:	Water % Solids: NA	Instrument ID:	ICPMS1
Sample Amt:	50 mL	Lab File ID:	2180821A_MS1.b\023SMPL.d
Prep Vol.:	50 (mL)	Dilution Factor:	1Analyst: LWZ
Prep Date:	08/20/18	Analysis Date:	08/21/18 Time: 1151
Prep Batch:	642277	Analytical Batch:	642381
Prep Method:	3010A	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	0.74	ug/L	J	0.50	1.00	2.00
Copper	0.26	ug/L	J	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

Report No:	218081813			Client Sample ID:	WIL04IS03		
Collect Date:	08/15/18	Time:	1610	GCAL Sample ID:	2180818130	4	
Matrix:	Solid	% Solids:	97.47	Instrument ID:	ICPMS1		
Sample Amt:	1.33	g		Lab File ID:	2180823A_N	1S1.b\043SM	PL.d
Prep Vol.:	50		(mL)	Dilution Factor:	10	Analyst:	LWZ
Prep Date:	08/22/18			Analysis Date:	08/23/18	Time:	1231
Prep Batch:	642442			Analytical Batch:	642536		
Prep Method:	EPA 3050B \	ISM		Analytical Method:	EPA 6020B		

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	386 US.M	ug/kg	U	193	386	771
Copper	15400 St.M	ug/kg		96.4	193	386
Lead	7260	ug/kg		96.4	193	386
Zinc	56500	ug/kg		1930	3860	7710

Report No:	218081813	Client Sample ID:	WIL04IS01				
Collect Date:	08/15/18 Time: 1600	GCAL Sample ID:	21808181305				
Matrix:	Solid % Solids: 97.68	Instrument ID:	ICPMS1				
Sample Amt:	<u>1.35 g</u>	Lab File ID:	2180823A_MS1.b\044SMPL.d				
Prep Vol.:	50 (mL)	Dilution Factor:	10 Analyst: LWZ				
Prep Date:	08/22/18	Analysis Date:	08/23/18 Time: 1235				
Prep Batch:	642442	Analytical Batch:	642536				
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	379 VS.m	ug/kg	U	190	379	758
Copper	14900 5	ug/kg		94.8	190	379
Lead	7110	ug/kg		94.8	190	379
Zinc	56400	ug/kg		1900	3790	7580

Report No:	218081813	Client Sample ID:	Client Sample ID: WIL04IS02					
Collect Date:	08/15/18 Time: 1605	GCAL Sample ID:	21808181306					
Matrix:	Solid % Solids: 97.99	Instrument ID:	ICPMS1					
Sample Amt:	<u>1.32 g</u>	Lab File ID:	2180823A_MS1.b\0455	SMPL.d				
Prep Vol.:	50 (ml) Dilution Factor:	10 Analys	t: LWZ				
Prep Date:	08/22/18	Analysis Date:	08/23/18 Time	e: <u>1240</u>				
Prep Batch:	642442	Analytical Batch:	642536					
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B					

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	387 US.M	ug/kg	U	193	387	773
Copper	14400 5+	ug/kg		96.6	193	387
Lead	6660	ug/kg		96.6	193	387
Zinc	51100	ug/kg		1930	3870	7730

Report No:	218081813	Client Sample ID:	WIL03IS03				
Collect Date:	08/14/18 Time: 1610	GCAL Sample ID:	21808181307				
Matrix:	Solid % Solids: 70.33	Instrument ID:	ICPMS2				
Sample Amt:	1.26 g	Lab File ID:	2180828C_MS2.b\0	01SMPL.d			
Prep Vol.:	<u>50</u> (r	L) Dilution Factor:	<u>10</u> Ana	llyst: LWZ			
Prep Date:	08/25/18	Analysis Date:	08/28/18	ïme: <u>1355</u>			
Prep Batch:	642531	Analytical Batch:	642829				
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	564 US.m	ug/kg	U	282	564	1130
Copper	35700	ug/kg		141	282	564
Lead	22700	ug/kg		141	282	564
Zinc	81700	ug/kg		2820	5640	11300

Report No:	218081813			Client Sample ID:	WIL03IS02			
Collect Date:	08/14/18	Time:	1605	GCAL Sample ID:	2180818130	8		
Matrix:	Solid	% Solids:	92.27	Instrument ID:	ICPMS2			
Sample Amt:	1.28	g		Lab File ID:	2180828B_N	/IS2.b\1842SI	MPL_21808	28A_MS2.D
Prep Vol.:	50		(mL)	Dilution Factor:	10	Analyst:	LWZ	
Prep Date:	08/25/18			Analysis Date:	08/28/18	Time:	1308	
Prep Batch:	642531			Analytical Batch:	642829			
Prep Method:	EPA 3050B	ISM		Analytical Method:	EPA 6020B			

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	423 VS.M	ug/kg		212	423	847
Copper	23100	ug/kg		106	212	423
Lead	14300	ug/kg		106	212	423
Zinc	66900	ug/kg		2120	4230	8470

Report No:	218081814			Client Sample ID:	WIL02IS01		
Collect Date:	08/15/18	Time: 12	00	GCAL Sample ID:	21808181401		
Matrix:	Solid	% Solids: 8	5.34	Instrument ID:	ICPMS2		
Sample Amt:	1.25	g		Lab File ID:	2180828B_M	S2.b\1843SN	/PL_2180828A_MS2.D
Prep Vol.:	50		(mL)	Dilution Factor:	10	Analyst:	LWZ
Prep Date:	08/25/18			Analysis Date:	08/28/18	Time:	1312
Prep Batch:	642531			Analytical Batch:	642829		
Prep Method:	EPA 3050B \	ISM		Analytical Method:	EPA 6020B		

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	469 USM	ug/kg	U	234	469	937
Copper	38400	ug/kg		117	234	469
Lead	15900	ug/kg		117	234	469
Zinc	88500	ug/kg		2340	4690	9370

Report No:	218081814	Client Sample ID:	WIL02IS02
Collect Date:	08/15/18 Time: 1210	GCAL Sample ID:	21808181404
Matrix:	Solid % Solids: 84.25	Instrument ID:	ICPMS2
Sample Amt:	1.31 g	Lab File ID:	2180828B_MS2.b\1848SMPL_2180828A_MS2.D
Prep Vol.:	50 (mL)	Dilution Factor:	10 Analyst: LWZ
Prep Date:	08/25/18	Analysis Date:	08/28/18 Time: 1329
Prep Batch:	642531	Analytical Batch:	642829
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	453 US.m	ug/kg	U	227	453	906
Copper	33900	ug/kg		113	227	453
Lead	15100	ug/kg		113	227	453
Zinc	77400	ug/kg		2270	4530	9060

Report No:	218081814	Client Sample ID:	WIL01IS03
Collect Date:	08/14/18 Time: 1400	GCAL Sample ID:	21808181405
Matrix:	Solid % Solids: 93.16	Instrument ID:	ICPMS2
Sample Amt:	<u>1.4 g</u>	Lab File ID:	2180828B_MS2.b\1849SMPL_2180828A_MS2.D
Prep Vol.:	50 (mL)	Dilution Factor:	10 Analyst: LWZ
Prep Date:	08/25/18	Analysis Date:	08/28/18 Time: 1333
Prep Batch:	642531	Analytical Batch:	642829
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	383 US.m	ug/kg	U	192	383	767
Copper	24300	ug/kg		95.8	192	383
Lead	69100	ug/kg		95.8	192	383
Zinc	64500	ug/kg		1920	3830	7670

Report No:	218081814		Client Sample ID:	WIL01IS01			
Collect Date:	08/14/18	Time: 1340	GCAL Sample ID:	21808181406			
Matrix:	Solid	% Solids: 94.08	Instrument ID:	ICPMS2			
Sample Amt:	<u>1.26 g</u>	1	Lab File ID:	2180828B_MS	S2.b\1852SN	1PL_2180828A_MS2.D	
Prep Vol.:	50	(mL)	Dilution Factor:	10	Analyst:	LWZ	
Prep Date:	08/25/18		Analysis Date:	08/28/18	Time:	1344	
Prep Batch:	642531		Analytical Batch:	642829			
Prep Method:	EPA 3050B \ IS	M	Analytical Method:	EPA 6020B			

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	422 US M	ug/kg	U	211	422	844
Copper	23800	ug/kg		105	211	422
Lead	46500	ug/kg		105	211	422
Zinc	67300	ug/kg		2110	4220	8440

Report No:	218081814	Client Sample ID:	WIL02IS03
Collect Date:	08/15/18 Time: 1220	GCAL Sample ID:	21808181407
Matrix:	Solid % Solids: 79.69	Instrument ID:	ICPMS2
Sample Amt:	1.34 g	Lab File ID:	2180828B_MS2.b\1853SMPL_2180828A_MS2.D
Prep Vol.:	50 (mL)	Dilution Factor:	10Analyst: LWZ
Prep Date:	08/25/18	Analysis Date:	08/28/18 Time: 1347
Prep Batch:	642531	Analytical Batch:	642829
Prep Method:	EPA 3050B \ ISM	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	468 US.m	ug/kg	U	234	468	936
Copper	35600	ug/kg		117	234	468
Lead	15700	ug/kg		117	234	468
Zinc	81400	ug/kg		2340	4680	9360

DATA VALIDATION WORKSHEET

Review	er:	r: Naoum Tavantzis		vantzis	Explosives	Project Name:	Williston LTA
Date:			10/24/20)18		Project Number:	60520956
DV Lev	el:	II	III	IV		Laboratory:	GCAL
Review	Doc	umen	nt:			SDG No.:	218081812+13+14
_X	USE	PA C	LP Natio	onal Fun	ctional Guidelines for Superfund Inorganic Methods Data Review	Test Name:	Explosives
_X	SW-	846/E	DoD QSI	M v5.1		Method No.:	8330B
_X	Proje	ect Q	APP/SA	Р		_	

1.0 Labora	atory Deliverables	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples that were analyzed?	Χ		
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?	Χ		
1.3	Do sample preservation, collection and storage condition meet method requirement?	Χ		
	If samples were received with the cooler temperature exceeding 10° C, then flag J(+)/UJ(-).			
1.4	Were the sediment samples dryed and sieved appropriately?	Χ		
1.5	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition		v	
	of samples, analytical problems or special circumstances affecting the quality of the data?		Λ	
Notes:				

2.0 Holding Times			No	NA			
2.1	Have any technical holding times, determined from date of sampling to date of analysis, been exceeded? If yes, J(+)/UJ(-). Extraction: (aqueous) 7 days and (soil) 14 days; and Analysis: 40 days.	X					
2.2	Have any technical holding time grossly (twice the holding time) been exceeded? If yes, J(+)/UJ(-) OR R(-).		Χ				
Notes: The field sample results associated with low LCS percent recoveries were re-extracted after the holding time of 14 d				ed.			

3.0 Blanks	(Laboratory and Fi	ield)					Yes	No	NA
3.1	Were method blank	ks (MB) pr	epared at the app	propriate frequency (o	one per 20 samples, pe	r batch per matrix?)	X		
3.2	Do any method blan	nks have p	ositive results?	Action: If yes:					
	Blank Result:	≤LO	D		>LOD]	v	
	Sample Result: \geq	[LOD]	<[LOD]	<lod< td=""><td>≥LOD, <[Blank]</td><td>\geq[LOD], \geq[Blank]</td><td></td><td>Л</td><td></td></lod<>	≥LOD, <[Blank]	\geq [LOD], \geq [Blank]		Л	
	Qualification: [L	LOD]"U"	Judgement	[LOD]"U"	[Blank]U OR R	Judgement			
3.3	Do any field equipr	nent blank	s/trip blanks hav	e positive results? If	yes, use same rules at	oove.		X	
Notes:									

4.0 Initial a	and Continuing Calibration	Yes	No	NA		
4.1	Are the Quartlery LOD establishment forms provided? Is the signal/noise ratio of the LODV greater than 3:1?	Χ				
4.2	If not, is the determination repeated at a higher concentration?	Χ				
4.3	Are at least five standards included in the calibration curve? If no, flag "R".	Χ				
4.4	Was a second source calibration verification analyzed for each calibration curve? If no, flag "R".	Χ				
4.5	Were continuing calibration standards analyzed every 12 hours or ten samples and at the end of the sequence? If no, flag "R".	X				
4.6	Are all calibration standard %RSD (<15%ICAL, r>0.995), second source (\pm 20%) or %D(\leq 20%) within the control limits?	X				
For initial calibration: $\%$ RSD > 15% J(+) If RRF<0.05 J(+)/R(-)						
For second	For second source: %D>20%, J(+)/R(-).					
For continuing calibration: Positive Bias - %D >+ 20%, J(+), only. Negative Bias - %D>-20%, but<50% J(+)/UJ(-)						
Notes:						

5.0 Labor	atory Control Sample (LCS)	Yes	No	NA	
5.1	Is the LCS/LCSD recovery form present?	X			
5.2	Were LCS/LCSDs analyzed at the required frequency (one per 20 samples per batch) for each matrix?		Χ		
5.2	Are there any %Rs for LCS/LCSD recoveries outside the QC limits of 80-120%?	v			
5.5	Action: If Yes, for $\%$ R > UCL, J(+) only; for $\%$ R < LCL,J(+)/R(-);	Λ			
5 /	Are there any RPD >20%?	v			
5.4	Action: If Yes, J(+) only.	Λ			
Notes:	Notes: Several LCS recoveries less than the lower QC limits in batch 642698, and recoveries higher than the QC limits i				
	batches displayed zero percent recoveries for tetryl. In addition, the LCS/LCSD displayed several relative percent))	
	anomalies greater than the laboratory QC limit of 20%.				
6.0 Surro	gate Recovery	Yes	No	NA	
6.1	Are surrogate recoveries within acceptance criteria for all samples and method blanks?	X			
6.2	If No in Section 6.1, are these sample(s) or method blank(s) reanalyzed?				
	Action: If any surrogate in the fraction is out of specification, there should be a reanalysis to confirm that the			Χ	
	non-compliance is because of sample matrix effects rather than laboratory deficiencies.				
6.3	If No in Section 6.2, is any sample dilution factor greater than 10? (recoveries may be diluted out.)			v	
	Action: for a $\%$ R > UCL, J(+) only; for a $\%$ R < LCL, but > 10%, J(+)/UJ(-); for any $\%$ R < 10%, J(+)/R(-).			А	

Notes:

7.0 Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	Yes	No	NA	
7.1	Is the matrix spike/matrix spike duplicate recovery form present?	Χ			
7.2	Were matrix spikes analyzed at required frequency (one per 20 samples per batch) for each matrix?	X			
7.3	Are there any %R for matrix spike and matrix spike duplicate recoveries outside the QC limits?	X			
	Are there any RPDs for matrix spike and matrix spike duplicate recoveries outside the QC limits?				
7.4	Action: %R or % RPD> UCL J(+); %R< LCL: J(+)/UJ(-) [or possible R(-) for <20%] to parent sample results	Χ			
	for the specific outlier analyte(s) or class of analytes using professional judgement.				
Notes:	Matrix spike performed on WIL02DA02A in QC batch 643342 displayed a recovery less than the lower QC limit	for HM	X; the N	IS pair	
	performed on WIL02DA02A displayed several RPD anomalies.				

8.0 Field Duplicate /Triplicate				NA
8.1	Evaluate field duplicate results For sample results > 5 x RL, a control limit of $\leq 30\%$ RPD/RSD will be used.	v		
	For sample results < 5 x RL, a control limit of 2 x RL will be used.	Λ		

Notes:

9.0 Compound Identification and Detection Limit Verification			No	NA
9.1	Are any target compounds detected in the field samples? If Yes, are all positive identifications confirmed in second column? Apply J flag if RPD >40% between first and second columns.			X
9.2	Do detection limits meet those required by the project QAPP and were they properly adjusted for dilution factors and moisture (including adjustment of wet weight aliquot)?	X		
Notes:				

10.0 Data Completeness			No	NA
10.1	Is % completeness within the control limits? (Control limit $95\%_{aq}$ and $90\%_{so}$)	Χ		
10.1.1	Number of samples: 6			
10.1.2	Number of target compounds in each analysis: <u>17</u>			
10.1.3	Number of results rejected or not reported: <u>3</u>			
	% Completeness = $(10.1.1 \times 10.1.2 - 10.1.3) \times 100/(10.1.1 \times 10.1.2)$			
	% Completeness = <u>97.1%</u>			
Vial	Sample	Dilution	File Number	
---------	-------------	----------	-------------	
P1-A-02	1207*2500	1	A000003.D	
P1-A-02	1206*1250	1	A000004.D	
P1-A-02	1205*1000	1	A000005.D	
P1-A-03	1204*500	1	A000006.D	
P1-A-03	1203*250	1	A000007.D	
P1-A-03	1202*125	1	A000008.D	
P1-A-03	1201*50	1	A000009.D	
P1-A-04	1600*1000	1	A000010.D	
P1-E-07	21807123417	1	A000011.D	
P1-E-08	1831319	1	A000012.D	
P1-E-09	1831318	1	A000013.D	
P1-F-02	21807123418	1	A000014.D	
P1-F-03	21807123419	1	A000015.D	
P1-F-04	21807123420	1	A000016.D	
P1-F-05	21807123421	1	A000017.D	
P1-F-06	21807123422	1	A000018.D	
P1-F-07	1831320	1	A000019.D	
P1-F-08	1831314	1	A000020.D	
P1-F-09	1831315	1	A000021.D	
P1-A-01	1400*1000	1	A000022.D	
P2-A-01	1831831	1	A000023.D	
P2-A-02	1831832	1	A000024.D	
P2-A-03	1831833	1	A000025.D	
P2-A-04	21807132408	1	A000026.D	
P2-A-05	21807132410	1	A000027.D	
P2-A-06	21807132411	1	A000028.D	
P2-A-07	21807132412	1	A000029.D	
P2-A-08	21807132413	1	A000030.D	
P2-A-09	1831834	1	A000031.D	
P2-B-01	1831835	1	A000032.D	
P2-B-02	21807132414	1	A000033.D	
P2-B-03	21807132415	1	A000034.D	
P2-B-04	21807132416	1	A000035.D	
P1-A-01	1400*1000	1	A000036.D	
P2-B-05	21807132417	1	A000037.D	
P2-B-06	1831836	1	A000038.D	
P2-B-07	1831837	1	A000039.D	
P2-B-08	21807132418	5	A000040.D	
P2-B-09	21807132419	1	A000041.D	
P2-C-01	21807132421	5	A000042.D	
P2-C-02	1831838	1	A000043.D	
P2-C-03	1831832	1	A000044.D	
P2-C-04	1831833	1	A000045.D	
P1-A-01	1400*1000	1	A000046.D	

÷

Analyst	MEG
Method	ARCI
CCV	005-45-6
RunDate	7/24/2018

								GCALID - Filell	D - Conc	12	01~218(0724\A09	~ 50	
Report No: 21808	1812			Instrument ID:	HPLC3			1202 ~ 218072	4\A08 ~ 125	12	03 - 218(0724\A07	- 250	
GC Column:		₽	(mm)	Analyst:	MEG			1204 ~ 218072	4\A06 ~ 500	12	<u> 05 ~ 2180</u>	1724\A05	~ 1000	-
Calib. Date 1: 07/24/	18 Tin	ne 1: 1355		Analytical Batch:	640653			1206 ~ 218072	4\A04 ~ 1250	12	07 ~ 218(0724\A03	~ 2500	
Calib. Date 2: 07/24/	18 Tin	le 2: 1552		Analytical Method	EPA 83	30B								
ANAL YTE	1201	1202	1203	1204	1205	1206	1207	1208	1209	RF/b/A	m/B	ი	ת זוז	ΡE
1,2-Dinitrobenzene	16.7	16.6	16.5	17.4	18.6	18.5	17.5			17.8			11.78	4
1,3,5-Trinitrobenzene	10.9	11.5	11.4	11.1	12.4	12.4	11.9			11.9			11.66	∢
1,3-Dinitrobenzene	11.5	12.0	11.4	10.7	12.8	12.7	12.5			12.2			12.12	A
2,4,6-Trinitrotoluene	17.2	16.3	16.4	16.5	18.2	18.1	17.9			17.6			10.85	۲
2,4-Dinitrotoluene	12.1	12.0	12.2	13.6	14.1	14.0	13.6			13.5			12.38	۲
2,6-Dinitrotoluene	22.7	25.0	25.1	21.1	26.4	26.8	27.1			25.3			13.72	<
2-Amino-4,6-dinitrotoluene	e 19.0	20.9	20.4	18.9	23.5	23.4	23.2			21.9			14.61	۲
2-Nitrotoluene	13.3	13.1	13.5	14.0	15.1	15.1	15.3			14.6			11.90	∢
3,5-Dinitroaniline	11.1	10.7	10.7	11.2	11.9	11.8	11.8			11.6			10.28	۷
3-Nitrotoluene	11.7	11.5	11.4	12.0	13.0	12.7	13.1			12.5			10.60	۷
4-Amino-2,6-dinitrotoluene	e 28.6	32.3	30.0	35.0	33.3	33.1	33.0			32.9			11.12	A
4-Nitrotoluene	21.1	23.5	24.3	22.2	23.0	23.7	23.8			23.6			10.02	۷
HMX	36.9	37.6	39.7	40.7	44.2	43.6	43.9			42.1			12.44	A
Nitrobenzene	18.3	19.7	19.6	19.8	21.6	21.6	21.5		14	20.8			11.95	∢
Nitroglycerin	29.6	29.3	30.7	31.0	34.1	34.1	34.4			32.7			12.34	A
Pentaerythritol Tetranitrate	26.2	27.6	27.5	28.4	30.3	30.6	32.0			29.7			11.85	۷
RDX	29.5	30.1	31.0	32.0	34.6	34.6	35.0			33.3			12.36	<
Tetry	21.6	23.2	23.6	23.3	25.6	25.8	25.5			24.4			12.87	A

•

.

FORM VI SVOA

For curve types L and Q, the RRF and RSP (Response) are shown on separate lines to allow for evaluation against minimum RRF

FIT = %RSD For Average Curve And Calibration Coefficent For Linear And Quadratic Curve Types: A - Averged, L - Linear Regression, W - Weighted Linear, Q - Quadratic

m,b = Slope and Intercept For Linear Curve A,B,C = Coefficents For Quadratic Curve

 $\overline{\mathsf{RF}}$ = Mean Response Factor For Average Curve

8081810

Page 243 of 287

6E

•

ORGANICS INITIAL CALIBRATION DATA

GCAL Report#: 218081812

6

ORGANICS INITIAL CALIBRATION VERIFICATION

Report No:	218081812	Instrument ID:	HPLC3
Analysis Date:	07/24/18 1612	Lab File ID:	2180724\A10
Analytical Method:	EPA 8330B	Analytical Batch:	640653

ANALYTE	UNITS	TRUE	FOUND	% REC	LCL	UCL	Q
1,3,5-Trinitrobenzene	ug/L	1000	1060	106	80	120	
1,3-Dinitrobenzene	ug/L	1000	1050	105	80	120	
2,4,6-Trinitrotoluene	ug/L	1000	1060	106	80	120	
2,4-Dinitrotoluene	ug/L	1000	1070	107	80	120	
2,6-Dinitrotoluene	ug/L	1000	1050	105	80	120	
2-Amino-4,6-dinitrotoluene	ug/L	1000	1030	103	80	120	
2-Nitrotoluene	ug/L	1000	1060	106	80	120	
3,5-Dinitroaniline	ug/L	1000	1060	106	80	120	
3-Nitrotoluene	ug/L	1000	1060	106	80	120	
4-Amino-2,6-dinitrotoluene	ug/L	1000	1100	110	80	120	
4-Nitrotoluene	ug/L	1000	1100	110	80	120	
HMX	ug/L	1000	1070	107	80	120	
Nitrobenzene	ug/L	1000	1080	108	80	120	
Nitroglycerin	ug/L	1000	1050	105	80	120	
Pentaerythritol Tetranitrate	ug/L	1000	1030	103	80	120	
RDX	ug/L	1000	1050	105	80	120	
Tetryl	ug/L	1000	1010	101	80	120	

...

Vial	Sample	Dilution	File Number
Vial 2	1400*1000	1	A000003.D
P2-A-01	1843189	1	A000004.D
P2-A-02	1843190	1	A000005.D
P2-A-03	1843191	1	A000006.D
P2-A-04	21808241101	1	A000007.D
P2-A-05	1843193	1	A000008.D
P2-A-06	1843192	1	A000009.D
P2-A-07	1843194	1	A000010.D
P2-A-08	1843195	1	A000011.D
P2-A-09	1843196	1	A000012.D
Vial 2	1400*1000	1	A000013.D
P2-B-01	21808172601	1	A000014.D
P2-B-02	21808172602	1	A000015.D
P2-B-03	21808172603	1	A000016.D
P2-B-04	21808172604	1	A000017.D
Vial 2	1400*1000	1	A000018.D
P2-B-06	1843101	1	A000019.D
P2-B-07	1843102	1	A000020.D
P2-B-08	1843103	1	A000021.D
P2-B-09	21808181401	1	A000022.D
P2-C-01	21808181402	1	A000023.D
P2-C-02	21808181403	1	A000024.D
P2-C-03	21808181404	1	A000025.D
P2-C-04	21808181407	1	A000026.D
P2-C-05	1843105	1	A000027.D
P2-C-06	1843104	1	A000028.D
P2-C-07	1843106	1	A000029.D
P2-C-08	1843214	1	A000030.D
P2-C-09	1843215	1	A000031.D
Vial 2	1400*1000	1	A000032.D

Analyst	MEG
Method	ARCI
CCV	005-49-4
RunDate	8/30/2018

7E

ORGANICS CONTINUING CALIBRATION CHECK

Report No:	218081812			. c	CAL ID:	1400				,
GC Column:	ARC18	ID <u>3</u>	(mm)	lr	strument ID:	HPLC	3			
Injection Vol.:	1.0		(µL)	L	ab File ID:	21808	30\A03			_
Init. Calib. Date 1:	07/24/18	Time 1:	1355	A	nalyst:	MEG				
Init. Calib. Date 2:	07/24/18	Time 2:	1552	A	nalytical Batc	h: <u>6</u> 4305	0			_
Analysis Date:	08/30/18	Time:	1116	A	nalytical Meth	nod: EPA 8	330B			
ANALYTE		TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzen	e	1000	1156	17.8	15.2	NA	-14.6	20	A	
1,3,5-Trinitrobenze	ene	1000	1037	11.9	11.4	NA	-4.2	20	A	Γ
1,3-Dinitrobenzen	e	1000	995.7	12.2	12.1	NA	8	20	A	
2,4,6-Trinitrotolue	ne	1000	1061	17.6	16.5	NA	-6.3	20	A	
2,4-Dinitrotoluene		1000	986.4	13.5	13.5	NA	0	20	A	
2,6-Dinitrotoluene		1000	976.3	25.3	25.6	NA	1.2	20	A	
2-Amino-4,6-dinitr	otoluene	1000	960.0	21.9	22.4	NA	2.3	20	A	
2-Nitrotoluene		1000	866.8	14.6	16.6	NA	13.7	20	A	
3,5-Dinitroaniline		1000	970.9	11.6	11.9	NA	2.6	20	A	
3-Nitrotoluene		1000	890.7	12.5	13.9	NA	11.2	20	A	
4-Amino-2,6-dinitr	otoluene	1000	1033	32.9	31.6	NA	-4	20	A	
4-Nitrotoluene		1000	921.0	23.6	25.4	NA	7.6	20	A	
НМХ		1000	958.3	42.1	43.4	NA	3.1	20	A	
Nitrobenzene		1000	858.6	20.8	23.9	NA	14.9	20	A	
Nitroglycerin		1000	989.0	32.7	32.7	NA	0	20	A	
Pentaerythritol Tel	tranitrate	1000	1021	29.7	28.8	NA	-3	20	A	
RDX		1000	961.8	33.3	34.2	NA	2.7	20	A	
Tetryl		1000	972.3	24.4	24.8	NA	1.6	20	A	

.

7E

ORGANICS CONTINUING CALIBRATION CHECK

Report No:	218081812			. с	CAL ID:	1400				
GC Column:	ARC18	ID 3	(mm)	In	strument ID:	HPLC	3			_
Injection Vol.:	1.0		(µL)	La	ab File ID:	21808	30\A13			
Init. Calib. Date 1:	07/24/18	Time 1:	1355	A	nalyst:	MEG				
Init. Calib. Date 2:	07/24/18	Time 2:	1552	A	nalytical Batc	h: 64305	0			
Analysis Date:	08/30/18	Time:	1443	A	nalytical Meth	nod: EPA 8	330B			_
ANALYTE		TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzene	9	1000	1108	17.8	15.9	NA	-10.7	20	A	Γ
1,3,5-Trinitrobenze	ene	1000	992.1	11.9	11.9	NA	0	20	A	Г
1,3-Dinitrobenzene	9	1000	952.0	12.2	12.7	NA	4.1	20	A	Г
2,4,6-Trinitrotoluer	ne	1000	965.8	17.6	18.1	NA	2.8	20	A	Γ
2,4-Dinitrotoluene	-	1000	937.7	13.5	14.2	NA	5.2	20	A	Γ
2,6-Dinitrotoluene		1000	933.9	25.3	26.7	NA	5.5	20	A	Γ
2-Amino-4,6-dinitro	otoluene	1000	906.6	21.9	23.7	NA	8.2	20	A	Г
2-Nitrotoluene		1000	935.7	14.6	15.4	NA	5.5	20	A	Γ
3,5-Dinitroaniline		1000	929.8	11.6	12.4	NA	6.9	20	A	Γ
3-Nitrotoluene		1000	953.7	12.5	13.0	NA	4	20	Α	Γ
4-Amino-2,6-dinitro	otoluene	1000	993.7	32.9	32.8	NA	3	20	A	Γ
4-Nitrotoluene		1000	991.7	23.6	23.6	NA	0	20	A	Г
HMX		1000	916.9	42.1	45.3	NA	7.6	20	A	Γ
Nitrobenzene		1000	928.8	20.8	22.1	NA	6.3	20	A	Γ
Nitroglycerin		1000	945.8	32.7	34.2	NA	4.6	20	A	Γ
Pentaerythritol Tel	tranitrate	1000	1008	29.7	29.2	NA	-1.7	20	Α	
RDX		1000	924.8	33.3	35.6	NA	6.9	20	A	
Tetryl		1000	1021	24.4	23.6	NA	-3.3	20	A	

...

7E ORGANICS CONTINUING CALIBRATION CHECK

Report No:	218081814				CCAL ID:	1400
GC Column:	ARC18	ID 3		(mm)	Instrument ID:	HPLC3
Injection Vol.:	1.0			(µL)	Lab File ID:	2180830\A18
Init. Calib. Date 1:	07/24/18	Time 1:	1355		Analyst:	MEG
Init. Calib. Date 2:	07/24/18	Time 2:	1552		Analytical Batch:	643050
Analysis Date:	08/30/18	Time:	1622		Analytical Method:	EPA 8330B

ANALYTE	TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzene	1000	1112	17.8	15.8	NA	-11.2	20	A	
1,3,5-Trinitrobenzene	1000	998.5	11.9	11.8	NA	8	20	A	
1,3-Dinitrobenzene	1000	957.2	12.2	12.6	NA	3.3	20	Α	
2,4,6-Trinitrotoluene	1000	983.1	17.6	17.8	NA	1.1	20	A	
2,4-Dinitrotoluene	1000	938.4	13.5	14.2	NA	5.2	20	A	
2,6-Dinitrotoluene	1000	942.0	25.3	26.5	NA	4.7	20	A	
2-Amino-4,6-dinitrotoluene	1000	904.0	21.9	23.8	NA	8.7	20	Α	
2-Nitrotoluene	1000	961.0	14.6	15.0	NA	2.7	20	Α	
3,5-Dinitroaniline	1000	919.0	11.6	12.5	NA	7.8	20	Α	
3-Nitrotoluene	1000	958.6	12.5	12.9	NA	3.2	20	Α	
4-Amino-2,6-dinitrotoluene	1000	969.2	32.9	33.6	NA	2.1	20	A	
4-Nitrotoluene	1000	1014	23.6	23.1	NA	-2.1	20	A	
НМХ	1000	916.4	42.1	45.3	NA	7.6	20	Α	
Nitrobenzene	1000	937.6	20.8	21.9	NA	5.3	20	Α	
Nitroglycerin	1000	941.9	32.7	34.3	NA	4.9	20	A	
Pentaerythritol Tetranitrate	1000	990.1	29.7	29.7	NA	0	20	A	
RDX	1000	901.8	33.3	36.5	NA	9.6	20	A	
Tetryl	1000	990.2	24.4	24.4	NA	0	20	Α	

Report No:	218081814				CCAL ID:	1400
GC Column:	ARC18	1D 3		(mm)	Instrument ID:	HPLC3
Injection Vol.:	1.0			(µL)	Lab File ID:	2180830\A32
Init. Calib. Date 1:	07/24/18	Time 1:	1355		Analyst:	MEG
Init. Calib. Date 2:	07/24/18	Time 2:	1552		Analytical Batch:	643050
Analysis Date:	08/30/18	Time:	2058		Analytical Method:	EPA 8330B

ANALYTE	TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzene	1000	1141	17.8	15.4	NA	-13.5	20	A	
1,3,5-Trinitrobenzene	1000	1003	11.9	11.8	NA	8	20	A	
1,3-Dinitrobenzene	1000	979.0	12.2	12.3	NA	.8	20	A	
2,4,6-Trinitrotoluene	1000	976.1	17.6	17.9	NA	1.7	20	A	
2,4-Dinitrotoluene	1000	892.0	13.5	14.9	NA	10.4	20	A	
2,6-Dinitrotoluene	1000	1012	25.3	24.6	NA	-2.8	20	A	
2-Amino-4,6-dinitrotoluene	1000	919.1	21.9	23.4	NA	6.8	20	A	
2-Nitrotoluene	1000	937.8	14.6	15.4	NA	5.5	20	A	
3,5-Dinitroaniline	1000	925.7	11.6	12.4	NA	6.9	20	A	
3-Nitrotoluene	1000	925.8	12.5	13.4	NA	7.2	20	A	
4-Amino-2,6-dinitrotoluene	1000	969.1	32.9	33.6	NA	2.1	20	A	
4-Nitrotoluene	1000	963.8	23.6	24.3	NA	3	20	A	
HMX	1000	919.8	42.1	45.2	NA	7.4	20	A	
Nitrobenzene	1000	914.0	20.8	22.5	NA	8.2	20	A	
Nitroglycerin	1000	939.2	32.7	34.4	NA	5.2	20	A	
Pentaerythritol Tetranitrate	1000	958.4	29.7	30.7	NA	3.4	20	A	
RDX	1000	923.1	33.3	35.6	NA	6.9	20	A	
Tetryl	1000	981.3	24.4	24.6	NA	.8	20	A	

Vial	Sample	Dilution	File Number
Vial 2	1400*1000	1	A000004.D
P2-A-01	1845522	1	A000010.D
P2-A-02	1845523	1	A000011.D
P2-A-03	1845524	1	A000012.D
P2-A-04	21808311301	1	A000013.D
P2-A-05	1845525	1	A000014.D
P2-A-06	1845526	1	A000015.D
P2-A-07	1845527	1	A000016.D
P2-A-08	1845523	1	A000017.D
P2-A-09	1845524	1	A000021.D
P2-B-09	21808220401	1	A000022.D
Vial 2	1400*1000	1	A000023.D
P2-B-01	21808241301	1	A000024.D
P2-B-02	21808241302	1	A000025.D
P2-B-04	21808242301	1	A000026.D
P2-B-05	1843500	1	A000027.D
P2-B-06	1843499	1	A000028.D
P2-B-07	21808242302	1	A000029.D
P2-B-08	21808242303	1	A000030.D
Vial 2	1400*1000	1	A000031.D
P2-C-01	21808240301	1	A000032.D
P2-C-02	21808240302	1	A000033.D
P2-C-03	21808240303	1	A000034.D
P2-C-04	21808240304	1	A000035.D
P2-C-05	21808240305	1	A000036.D
P2-C-06	21808240306	1	A000037.D
P2-C-07	21808240307	1	A000038.D
P2-C-08	21808240308	1	A000039.D
P2-D-01	21808172301	1	A000040.D
Vial 2	1400*1000	1	A000041.D
P2-D-02	21808172302	1	A000042.D
P2-D-03	21808172303	1	A000043.D
P2-D-04	21808172304	1	A000044.D
P2-D-05	21808172305	1	A000045.D
P2-D-06	21808172306	1	A000046.D
P2-D-07	21808172307	1	A000047.D
P2-D-08	21808172308	1	A000048.D
P2-D-09	21808172309	1	A000049.D
P2-E-01	21808172310	1	A000050.D
P2-E-02	21808172311	1	A000051.D
Vial 2	1400*1000	1	A000052.D
P2-E-03	21808172312	1	A000053.D
P2-E-04	21808172313	1	A000054.D
P2-E-05	21808172314	1	A000055.D
P2-E-06	21808172315	1	A000056.D
P2-E-07	21808172316	1	A000057.D

.

P2-E-08	21808172317	1	A000058.D
P2-E-09	21808172318	1	A000059.D
P2-F-01	21808172319	1	A000060.D
P2-F-02	21808172320	1	A000061.D
P2-F-03	21808172321	1	A000062.D
Vial 2	1400*1000	1	A000063.D
P1-A-01	21808181206	1	A000064.D
P1-A-02	21808181207	1	A000065.D
P1-A-03	21808181208	1	A000066.D
P1-A-04	21808181209	1	A000067.D
P1-A-05	21808181210	1	A000068.D
P1-A-06	1846370	1	A000069.D
P1-A-07	1846371	1	A000070.D
P1-A-08	1846372	1	A000071.D
P1-A-09	21808181213	1	A000072.D
P1-B-01	21808181214	1	A000073.D
P1-B-02	21808181215	1	A000074.D
P1-B-03	21808181216	1	A000075.D
P1-B-04	21808181217	1	A000076.D
P1-B-05	1846373	1	A000077.D
P1-B-06	1846374	1	A000078.D
P1-B-07	1846375	1	A000079.D
P1-B-08	1846376	1	A000080.D
P1-B-09	1846377	1	A000081.D
Vial 2	1400*1000	1	A000082.D
P2-F-06	1845471	1	A000083.D
P2-F-07	1845472	1	A000084.D
P2-F-08	1845473	1	A000085.D
P2-F-09	21808302601	1	A000086.D
Vial 2	1400*1000	1	A000087.D

Analyst	MEG
Method	ARCI
CCV	005-49-9
RunDate	9/12/2018

5

7E

ORGANICS CONTINUING CALIBRATION CHECK

Report No:	218081812			С	CAL ID:	1400	1400			
GC Column:	ARC18	ID <u>3</u>	(mm)	Ir	strument ID:	HPLC	3			
Injection Vol.:	1.0		(µL)	L	Lab File ID: 2180912\A63					
Init. Calib. Date 1:	07/24/18	Time 1:	1355	A	Analyst: MEG					
Init. Calib. Date 2:	07/24/18	Time 2:	1552	A	Analytical Batch: 643776					_
Analysis Date:	alysis Date: 09/13/18 Time: 0520 Analytical Method: EPA 8330B			330B						
ANALYTE		TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzen	9	1000	1168	17.8	15.1	NA	-15.2	20	A	
1,3,5-Trinitrobenze	ene	1000	1128	11.9	10.5	NA	-11.8	20	A	
1,3-Dinitrobenzen	9	1000	1083	12.2	11.2	NA	-8.2	20	A	
2,4,6-Trinitrotoluer	ne	1000	1150	17.6	15.2	NA	-13.6	20	A	
2,4-Dinitrotoluene		1000	992.5	13.5	13.4	NA	7	20	A	
2,6-Dinitrotoluene		1000	1059	25.3	23.6	NA	-6.7	20	A	
2-Amino-4,6-dinitro	otoluene	1000	980.6	21.9	21.9	NA	0	20	A	
2-Nitrotoluene		1000	954.5	14.6	15.1	NA	3.4	20	A	
3,5-Dinitroaniline		1000	1017	11.6	11.3	NA	-2.6	20	A	
3-Nitrotoluene		1000	899.2	12.5	13.8	NA	10.4	20	A	
4-Amino-2,6-dinitro	otoluene	1000	1117	32.9	29.2	NA	-11.2	20	A	
4-Nitrotoluene		1000	882.8	23.6	26.5	NA	12.3	20	A	
HMX		1000	1035	42.1	40.1	NA	-4.8	20	A	Γ
Nitrobenzene		1000	939.4	20.8	21.9	NA	5.3	20	A	Γ
Nitroglycerin		1000	1071	32.7	30.2	NA	-7.6	20	A	
Pentaerythritol Tet	ranitrate	1000	1132	29.7	26.0	NA	-12.5	20	Α	
RDX		1000	1024	33.3	32.1	NA	-3.6	20	A	
Tetryl		1000	935.7	24.4	25.8	NA	5.7	20	A	

7E

ORGANICS CONTINUING CALIBRATION CHECK

Report No:	218081812			С	CAL ID:	1400	1400			
GC Column:	ARC18	ID <u>3</u>	(mm)	In	strument ID:	HPLC	HPLC3			
Injection Vol.:	1.0		(µL)	La	ab File ID:	21809	12\A82			
Init. Calib. Date 1:	07/24/18	Time 1:	1355	A	nalyst:	MEG				
Init. Calib. Date 2:	07/24/18	Time 2:	1552	A	Analytical Batch: 643776					
Analysis Date:	09/13/18	Time:	1135	A	Analytical Method: EPA 8330B					_
ANALYTE		TRUE	CONC	RRF	RRF CCV	Min RRF	%D/%Drift	Max %D/ %Drift	TYPE	Q
1,2-Dinitrobenzen	9	1000	1130	17.8	15.6	NA	-12.4	20	A	
1,3,5-Trinitrobenze	ene	1000	1083	11.9	10.9	NA	-8.4	20	Α	3
1,3-Dinitrobenzene	Э	1000	1081	12.2	11.2	NA	-8.2	20	A	
2,4,6-Trinitrotoluer	ne	1000	1108	17.6	15.8	NA	-10.2	20	A	
2,4-Dinitrotoluene		1000	921.8	13.5	14.4	NA	6.7	20	Α	
2,6-Dinitrotoluene		1000	1037	25.3	24.1	NA	-4.7	20	A	
2-Amino-4,6-dinitro	otoluene	1000	987.5	21.9	21.8	NA	5	20	A	
2-Nitrotoluene		1000	969.2	14.6	14.9	NA	2.1	20	A	
3,5-Dinitroaniline		1000	1037	11.6	11.1	NA	-4.3	20	A	\square
3-Nitrotoluene		1000	827.4	12.5	15.0	NA	20	20	A	
4-Amino-2,6-dinitro	otoluene	1000	1139	32.9	28.6	NA	-13.1	20	A	Γ
4-Nitrotoluene		1000	1033	23.6	22.7	NA	-3.8	20	A	
НМХ		1000	1031	42.1	40.3	NA	-4.3	20	Α	
Nitrobenzene	- A	1000	1078	20.8	19.1	NA	-8.2	20	Α	
Nitroglycerin		1000	1083	32.7	29.9	NA	-8.6	20	A	
Pentaerythritol Tet	ranitrate	1000	1100	29.7	26.7	NA	-10.1	20	Α	
RDX		1000	1012	33.3	32.5	NA	-2.4	20	A	
Tetryl		1000	1115	24.4	21.7	NA	-11.1	20	A	

EPA 8330B REPLICATE SUMMARY

Report No:	218081812	Parent Sample ID:	WIL02DA01B (RE)	
Prep Method:	EPA 8330B	Parent GCAL ID:	21808181217	
Prep Date:	9/5/2018 6:51:00 PM	Prep Batch:	643342	
Analytical Method:	EPA 8330B			

ANALYTE	CAS	UNITS	PARENT RESULT	REP #1 RESULT (1846373)	REP #2 RESULT (1846374)	%RSD	#
1,3,5-Trinitrobenzene	99-35-4	ug/Kg	0	0	0	0	
1,3-Dinitrobenzene	99-65-0	ug/Kg	0	0	0	0	
2,4,6-Trinitrotoluene	118-96-7	ug/Kg	0	0	0	0	
2,4-Dinitrotoluene	121-14-2	ug/Kg	0	0	0	0	
2,6-Dinitrotoluene	606-20-2	ug/Kg	11 O	0	0	0	
2-Amino-4,6-dinitrotoluene	35572-78-2	ug/Kg	0	0	0	0	
2-Nitrotoluene	88-72-2	ug/Kg	0	0	0	0	
3,5-Dinitroaniline	618-87-1	ug/Kg	0	0	0	0	
3-Nitrotoluene	99-08-1	ug/Kg	0	0	0	0	
4-Amino-2,6-dinitrotoluene	19406-51-0	ug/Kg	0	0	0	0	
4-Nitrotoluene	99-99-0	ug/Kg	0	0	0	0	
НМХ	2691-41-0	ug/Kg	0	0	0	0	
Nitrobenzene	98-95-3	ug/Kg	0	0	0	0	
Nitroglycerin	55-63-0	ug/Kg	0	0	0	0	
Pentaerythritol Tetranitrate	78-11-5	ug/Kg	0	0	0	0	
RDX	121-82-4	ug/Kg	0	0	0	0	
Tetryl	479-45-8	ug/Kg	0	0	0	0	

* - RSD greater than 20%

2F

ORGANIC SURROGATE RECOVERY

Report No: 218081812		Analytic	al N	lethod:	E	EPA 8330B				
Client Sample ID	GCALSample ID	SMC1	#	SMC2	#	SMC3	#	SMC4	#	TOT OUT
WIL02DA02A	21808181206	106								0
WIL02DA02A MS	21808181207	111	\square		П					0
WIL02DA02A MSD	21808181208	105								0
WIL02DA01A	21808181209	104	Π							0
WIL02DA01B	21808181210	106								0
WIL02DA02A (RE)	21808181213	103								0
WIL02DA02A MS (RE)	21808181214	98	П						П	0
WIL02DA02A MSD (RE)	21808181215	112					÷			0
WIL02DA01A (RE)	21808181216	97								0
WIL02DA01B (RE)	21808181217	96								0
MB1843189	1843189	71	П							0
LCS1843190	1843190	64	Π						П	0
LCSD1843191	1843191	45	*		\square					1
GRBLK for HBN 642698 [EXTO/549	1843194	83								0
MB1846370	1846370	114	П							0
LCS1846371	1846371	96								0
LCSD1846372	1846372	100		1						0
WIL02DA01B (RE)DUP	1846373	107	Π		Π				Π	0
WIL02DA01B (RE)DUP	1846374	108				_				0
GRBLK for HBN 643342 [EXTO/550	1846375	107								0

QC LIMITS

FORM II ORG-2

150

50

SMC 1 :	1,2-Dinitrobenzene
SMC 2 :	
SMC 3 :	

.

SMC 4 :

- # Column to be used to flag recovery limits
- * Value outside of QC limits
- D Surrogate diluted out

4C ORGANIC METHOD BLANK SUMMARY

Report No:	218081812		Method Blank ID:	1843189		14.14	
Matrix:	Solid		Instrument ID:	HPLC3			
Sample Amt:	10 g		Lab File ID:	2180830\A04			
Injection Vol.:	1.0	(µĽ)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000	(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/25/18		Analysis Date:	08/30/18	Time:	1145	
Prep Batch:	642698		Analytical Batch:	643050			
Prep Method:	8330B		Analytical Method:	EPA 8330B			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL DA		TIME	INSTRUMENT
	CLIENT SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	ID
1.	LCS1843190	1843190	08/30/18	1205	HPLC3
2.	LCSD1843191	1843191	08/30/18	1225	HPLC3
3.	GRBLK for HBN 642698 [EXTO/549	1843194	08/30/18	1344	HPLC3
4.	WIL02DA02A	21808181206	09/13/18	0540	HPLC3
5.	WIL02DA02A MS	21808181207	09/13/18	0559	HPLC3
6.	WIL02DA02A MSD	21808181208	09/13/18	0619	HPLC3
7.	WIL02DA01A	21808181209	09/13/18	0639	HPLC3
8.	WIL02DA01B	21808181210	09/13/18	0659	HPLC3

•

Ų	ANALYT	CAL LABORATOR	e/tite		oneenrer			* 6 4 2 6 9 8 *
AN/	ALYST/ CH	DUL	START BASTINE	1649 EN		14/18 15:0	д ватсн	642698
#	CLIENT	TYPE	CLIENT ID	GCAL ID	INITIAL WGT (g)	FINAL VOL (mL)	COMMENT	STANDARDS\ REAGENTS
1	QC	MB	MB 1843189	1843189	10.0	400		8330 Surrogate 4/10ug/mi / Volume 1.0ml
2	QC	LCS	SRM 1843190 ** Use SRM **	1843190	10.0	10 0		703-27-9
3	QC	LCSD	SRMD 1843191 ** Use SRM **	1843191	10.0	GOP 40,0		8330 Spike 4/10ug/ml / Volume 1.0r
4	4838	SAMP	WIL02DB02A	21808181204	10.1	2,0,0		103-23-1
5	4838	SAMP	WIL02DB01A	21808181205	10.0	40.0		Solid Reference Material
6	4838	SAMP	WIL02DA02A	21808181206	10.3	40.0		401150
7	4838	MS	WIL02DA02A MS	21808181207	10.0	40.0		HPLC Water
B	4838	MSD	WIL02DA02A MSD	21808181208	10,5	40.0		
9	4838	SAMP	WIL02DA01A	21808181209	10.5	40.0		Acetonitrile
0	4838	SAMP	WIL02DA01B	21808181210	10.D	40.0		2127054
1	4612 "	SAMP	ADA-20X38-A03-SP07	21808241101	10.1	40.0		Sand
2	00	DUP	DUP 1843193	1843193	10.1	LINA		1
3	00	DUP	DUP 1843192	1843192	11.5	40.0		
	OC.	GRBIK	GRBI K 1843194	1843194	10.0	400		
5	00	dics	SRM 1843195 ** Use SRM **	1843195	$\overline{110}$	LAN	· · · · · · · · · · · · · · · · · · ·	
		LCSD	SPMD 1843196 ** Use SRM **	1843196	12 2	นกัก		
17	*	LOOD		1040100	10.0	1010		
								-
	*							
19								-
20			1251	<u> </u>				
21	-							
22								
23								-
24		<u></u>						
25								-
26	200	-						
27	10							
28	<u> </u>	- 1						
29,	er al	- 64:				<u> </u>		
30	•	•.					<u> </u>	l
EQ	UIPMEN		TIONS					
BA	LANCE ID		DZ GRIND	ER ID - PUCK 01				
NC	TES							
Ma	trix-Solid.	Batch Batcl	h Rule 8330B_S_EX.					
١.,								
	* . B							
÷.,	ν.							
	2	4	÷					
•		*						

STATISTICS.

*

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	MB1843189	_		
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1843189			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180830\A04			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/25/18				Analysis Date:	08/30/18	Time:	1145	
Prep Batch:	642698				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812	081812			Client Sample ID:	GRBLK for HBN 642698 [EXTO/549			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1843194			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180830\A10			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/25/18				Analysis Date:	08/30/18	Time:	1344	
Prep Batch:	642698				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	НМХ	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

.

3F SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081812		
Prep Method:	8330B	Prep Batch:	642698
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 1843190 SPIKE SAMPLE LCS LCS % ANALYTE UNITS ADDED RESULT RESULT # REC QC LIMITS 1,3,5-Trinitrobenzene 2050 ug/kg 0 971 47 80 116 -1,3-Dinitrobenzene ug/kg 1520 0 755 50 73 119 -2,4,6-Trinitrotoluene 1400 ug/kg 0 584 42 71 120 -2,4-Dinitrotoluene ug/kg 1610 0 424 26 75 -121 2,6-Dinitrotoluene ug/kg 1200 0 1250 105 79 -117 2-Amino-4,6-dinitrotoluene 1260 0 37 ug/kg 469 71 123 -2-Nitrotoluene ug/kg 4080 0 1810 44 84 120 -3,5-Dinitroaniline ug/kg 3910 0 1530 39 86 118 -3-Nitrotoluene ug/kg 1750 0 739 42 67 129 -4-Amino-2,6-dinitrotoluene 2600 987 38 ug/kg 0 64 -127 4-Nitrotoluene ug/kg 652 0 305 47 71 124 нмх 3500 0 ug/kg 1350 39 74 124 -Nitrobenzene 3390 0 1320 39 ug/kg 128 80 -4600 Nitroglycerin ug/kg 0 1710 37 73 124 -Pentaerythritol Tetranitrate ug/kg 3100 0 957 31 128 72 -RDX 1200 0 506 42 ug/kg 129 67 -Tetryl ug/kg 100 0 0 0 68 -135

RPD : <u>3</u> out of <u>17</u> outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 33 out of 34 outside limits * Values outside of QC limits

3F SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081812		
Prep Method:	8330B	Prep Batch:	642698
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 1843191

		SPIKE	LCSD	LCSD		%		QC	LIMITS
ANALYTE	UNITS	ADDED	RESULT	% REC	#	RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	2050	842	41	*	14		80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	1520	657	43	*	14		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	1400	542	39	*	8		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	1610	519	32	*	20		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	1200	673	56	*	60	*	79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	1260	430	34	*	9		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	4080	1450	35	*	22	*	84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	3910	1340	34	*	14		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	1750	607	35	*	20		67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	2600	886	34	*	11		64 - 127	0 - 20
4-Nitrotoluene	ug/kg	652	392	60	*	25	*	71 - 124	0 - 20
НМХ	ug/kg	3500	1190	34	*	13		74 - 124	0 - 20
Nitrobenzene	ug/kg	3390	1140	34	*	15		80 - 128	0 - 20
Nitroglycerin	ug/kg	4600	1460	32	*	16		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	3100	915	30	*	4		72 - 128	0 - 20
RDX	ug/kg	1200	499	42	*	1		67 - 129	0 - 20
Tetryl	ug/kg	100	0	0	*	0		68 - 135	0 - 20

RPD : <u>3</u> out of <u>17</u> outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 33 out of 34 outside limits

* Values outside of QC limits

3F

SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081812	Parent Sample ID:	WIL02DA02A
Prep Method:	8330B	Prep Batch:	642698
Analytical Method:	EPA 8330B	Analytical Batch:	643776

GCAL QC ID: 21808181207 MS SPIKE SAMPLE MS % RESULT UNITS ADDED # ANALYTE RESULT REC QC LIMITS ug/kg 1,3,5-Trinitrobenzene 1000 0 1090 109 80 116 -1.3-Dinitrobenzene 1000 0 1090 109 ug/kg 73 119 -2,4,6-Trinitrotoluene 1000 0 1060 ug/kg 106 71 -120 2,4-Dinitrotoluene ug/kg 1000 0 1060 106 75 121 -2,6-Dinitrotoluene ug/kg 1000 0 1100 110 79 -117 2-Amino-4,6-dinitrotoluene 1000 0 997 100 123 ug/kg 71 -2-Nitrotoluene ug/kg 1000 0 1130 113 84 120 -3,5-Dinitroaniline ug/kg 1000 0 1040 104 86 118 -3-Nitrotoluene 1000 1040 104 ug/kg 0 67 129 -4-Amino-2,6-dinitrotoluene ug/kg 1000 0 1050 105 64 127 -4-Nitrotoluene 1000 0 1120 112 71 ug/kg 124 нмх 1000 0 74 986 99 124 ug/kg -Nitrobenzene 1000 ug/kg 0 1010 101 80 128 Nitroglycerin ug/kg 1000 0 977 98 124 73 -1000 Pentaerythritol Tetranitrate ug/kg 0 987 99 128 72 -RDX 917 1000 ug/kg 0 92 67 -129 Tetryl ug/kg 1000 0 1030 103 68 -135

RPD : <u>3</u> out of <u>17</u> outside limits

Column to be used to flag recovery and RPD values with an asterisk

10

Spike Recovery: 0 out of 34 outside limits

* Values outside of QC limits

3F SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081812	Parent Sample ID:	WIL02DA02A
Prep Method:	8330B	Prep Batch:	642698
Analytical Method:	EPA 8330B	Analytical Batch:	643776

GCAL QC ID: 21808181208

GCAL QC 1D. 21000101200		0.04/2		1100.0/					
ANALYTE	UNITS	ADDED	MSD RESULT	REC	#	% RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	952	1080	114		.6		80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	952	1070	112		2		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	952	957	100		10		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	952	1040	109		2		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	952	989	104		10		79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	952	885	93		12		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	952	812	85		32	*	84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	952	1100	116		5		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	952	901	95		14		67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	952	1040	109		.8		64 - 127	0 - 20
4-Nitrotoluene	ug/kg	952	846	89		28	*	71 - 124	0 - 20
HMX	ug/kg	952	955	100		3		74 - 124	0 - 20
Nitrobenzene	ug/kg	952	1010	106		.5		80 - 128	0 - 20
Nitroglycerin	ug/kg	952	956	100		2		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	952	1040	109		5		72 - 128	0 - 20
RDX	ug/kg	952	1010	106		10		67 - 129	0 - 20
Tetryl	ug/kg	952	820	86		23	*	68 - 135	0 - 20

RPD : 3 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: _____ out of _____ outside limits

* Values outside of QC limits

4C ORGANIC METHOD BLANK SUMMARY

Report No:	218081812		Method Blank ID:	1846370			
Matrix:	Solid		Instrument ID:	HPLC3			
Sample Amt:	<u>10 g</u>		Lab File ID:	2180912\A69			
Injection Vol.:	1.0	(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000	(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18		Analysis Date:	09/13/18	Time:	0719	
Prep Batch:	643342		Analytical Batch:	643776			
Prep Method:	8330B		Analytical Method:	EPA 8330B			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	DATE	TIME	INSTRUMENT
	CLIENT SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	ID
1.	LCS1846371	1846371	09/13/18	0738	HPLC3
2.	LCSD1846372	1846372	09/13/18	0758	HPLC3
3.	WIL02DA02A (RE)	21808181213	09/13/18	0818	HPLC3
4.	WIL02DA02A MS (RE)	21808181214	09/13/18	0838	HPLC3
5.	WIL02DA02A MSD (RE)	21808181215	09/13/18	0857	HPLC3
6.	WIL02DA01A (RE)	21808181216	09/13/18	0917	HPLC3
7.	WIL02DA01B (RE)	21808181217	09/13/18	0937	HPLC3
8.	WIL02DA01B (RE)DUP	1846373	09/13/18	0957	HPLC3
9.	WIL02DA01B (RE)DUP	1846374	09/13/18	1016	HPLC3
10.	GRBLK for HBN 643342 [EXTO/550	1846375	09/13/18	1036	HPLC3

			L 83	30B Explo	osives Prep	o Solid		* 6 4 3 3 4 2 *
AN TE	ALYST/ CH	M.	BATE/TIME			18 1510) ватсн	643342
#	CLIENT	TYPE	CLIENT ID	GCAL ID	INITIAL/WGT (g)	FINAL VOL (៣೬)	COMMENT	STANDARDS\ REAGENTS
1	QC	MB	MB 1846370	1846370	10.0	HO		8330 Surrogate 4/10ug/ml / Volume
2	QC	LCS	SRM 1846371 ** Use SRM **	1846371	10.0	HR		703-21-9
3	QC	LCSD	SRMD 1846372 ** Use SRM **	1846372	10.0	4.0		8330 Spike 4/10ug/ml / Volume 1.0ml
4	4838	SAMP	WIL02DB02A (RE)	21808181211	10.1	40		103-23-1
5	4838	SAMP	WIL02DB01A (RE)	21808181212	10.5	40		Solid Reference Material
6	4838	SAMP	WIL02DA02A (RE)	21808181213	10.	HU		2141150
7	4838	MS	WIL02DA02A MS (RE)	21808181214	10.3	, HD		HPLC Water
8	4838	MSD	WIL02DA02A MSD (RE)	21808181215	10.5	4D		H24789
9	4838	SAMP	WIL02DA01A (RE)	21808181216	10.1	4.0		Acetonitrile
10	4838	SAMP	WIL02DA01B (RE)	21808181217	10.6	40		009002
11	QC	DUP	DUP 1846374	1846374	10.0	40		Sand
12	QC	DUP	DUP 1846373	1846373	10.0	40		
13	QC	GRBLK	GRBLK 1846375	1846375	10.0	40		
14			LCS	1846376	10.0	HR		
15			LASD	1846377	10.0	41)		
16					Q: 10	, .		
17								
18								
19	4							
20								
21								
22								N
23								Age to
24								<u>}</u>
25								2.42 2.42
26								
27	_							
28								
29			1					
30								
-		1	<u> </u>	1	<u> </u>		<u></u>	L

EQUIPMENT\CONDITIONS

BALANCE ID	GRINDER ID - PUCK 01		
			*

NOTES

Matrix-Solid. Batch Batch Rule 8330B_S_EX.

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	MB1846370			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1846370			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180912\A69			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18				Analysis Date:	09/13/18	Time:	0719	
Prep Batch:	643342				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081812				Client Sample ID:	GRBLK for HB	N 643342 [EXTO/550	
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1846375			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	<u>g</u>			Lab File ID:	2180912\A79			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18		3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	09/05/18				Analysis Date:	09/13/18	Time:	1036	
Prep Batch:	643342				Analytical Batch:	643776			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	Ŭ	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

3F SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081812		
Prep Method:	8330B	Prep Batch:	643342
Analytical Method:	EPA 8330B	Analytical Batch:	643776

GCAL QC ID: 1846371							
		SPIKE	SAMPLE	LCS	LCS %		
ANALYTE	UNITS	ADDED	RESULT	RESULT	REC	Ŧ	QC LIMITS
1,3,5-Trinitrobenzene	ug/kg	1750	0	2110	121	*	80 - 116
1,3-Dinitrobenzene	ug/kg	1280	0	1620	126	*	73 - 119
2,4,6-Trinitrotoluene	ug/kg	1120	0	1240	111		71 - 120
2,4-Dinitrotoluene	ug/kg	1210	0	1300	107		75 - 121
2,6-Dinitrotoluene	ug/kg	1310	0	1370	104		79 - 117
2-Amino-4,6-dinitrotoluene	ug/kg	1210	0	1250	104		71 - 123
2-Nitrotoluene	ug/kg	3160	0	3540	112		84 - 120
3,5-Dinitroaniline	ug/kg	2690	0	3020	112	\square	86 - 118
3-Nitrotoluene	ug/kg	1360	0	1540	113		67 - 129
4-Amino-2,6-dinitrotoluene	ug/kg	1390	0	1360	98		64 - 127
4-Nitrotoluene	ug/kg	688	0	741	108		71 - 124
НМХ	ug/kg	2850	0	3290	116		74 - 124
Nitrobenzene	ug/kg	2340	0	2510	107		80 - 128
Nitroglycerin	ug/kg	3870	0	4540	117		73 - 124
Pentaerythritol Tetranitrate	ug/kg	2650	0	3070	116		72 - 128
RDX	ug/kg	923	0	1030	111		67 - 129
Tetryi	ug/kg	100	0	0	0	*	68 - 135

RPD : <u>3</u> out of <u>17</u> outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 8 out of 34 outside limits

* Values outside of QC limits

FORM III ORG-1

3F SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081812		
Prep Method:	8330B	Prep Batch:	643342
Analytical Method:	EPA 8330B	Analytical Batch:	643776

GCAL QC ID: 1846372									
		SPIKE	LCSD	LCSD	ш	%	ш	QC	LIMITS
ANALYIE	UNITS	ADDED	RESULT	% REC	#	RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	1750	2070	119	*	2		80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	1280	1420	111		13		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	1120	1320	118		6		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	1210	1290	106		1		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	1310	1300	99		5		79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	1210	1480	122		17		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	3160	3380	107		5		84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	2690	2880	107		4		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	1360	1970	145	*	24	*	67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	1390	1330	96		2		64 - 127	0 - 20
4-Nitrotoluene	ug/kg	688	2430	354	*	107	*	71 - 124	0 - 20
нмх	ug/kg	2850	3370	118		2		74 - 124	0 - 20
Nitrobenzene	ug/kg	2340	2480	106		1		80 - 128	0 - 20
Nitroglycerin	ug/kg	3870	4190	108		8		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	2650	4410	166	*	36	1	72 - 128	0 - 20
RDX	ug/kg	923	1010	110		2		67 - 129	0 - 20
Tetryl	ug/kg	100	0	0	*	0		68 - 135	0 - 20

RPD : 3 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

.

Spike Recovery: 8 out of 34 outside limits

* Values outside of QC limits

3F SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081812	Parent Sample ID:	WIL02DA02A (RE)
Prep Method:	8330B	Prep Batch:	643342
Analytical Method:	EPA 8330B	Analytical Batch:	643776

MS SPIKE SAMPLE MS % RESULT ANALYTE UNITS ADDED RESULT REC # QC LIMITS 1,3,5-Trinitrobenzene ug/kg 971 828 0 85 80 116 -1,3-Dinitrobenzene ug/kg 971 0 836 86 73 119 -2,4,6-Trinitrotoluene ug/kg 971 0 767 79 71 120 -2,4-Dinitrotoluene ug/kg 971 0 884 91 75 121 -2,6-Dinitrotoluene ug/kg 971 0 803 83 79 -117 2-Amino-4,6-dinitrotoluene ug/kg 971 0 889 92 71 123 -2-Nitrotoluene ug/kg 971 0 864 89 84 120 -3,5-Dinitroaniline 971 0 923 ug/kg 95 86 -118 3-Nitrotoluene ug/kg 971 0 833 86 67 129 -4-Amino-2,6-dinitrotoluene 971 0 1030 106 ug/kg 64 127 -4-Nitrotoluene 971 930 96 ug/kg 0 71 124 -HMX 971 ug/kg 0 596 61 74 124 -Nitrobenzene ug/kg 971 0 918 95 80 _ 128 Nitroglycerin 971 0 848 87 73 124 ug/kg _ Pentaerythritol Tetranitrate 971 0 947 ug/kg 98 72 128 RDX ug/kg 971 0 816 84 67 129 -Tetryl 971 0 734 76 ug/kg 68 135 -

RPD : 2 out of 17 outside limits

1.1

GCAL QC ID: 21808181214

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 1 out of 34 outside limits

* Values outside of QC limits

3F SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081812	Parent Sample ID:	WIL02DA02A (RE)
Prep Method:	8330B	Prep Batch:	643342
Analytical Method:	EPA 8330B	Analytical Batch:	643776

GCAL QC ID: 21808181215

		SPIKE	MSD	MSD %		%		QC	LIMITS
ANALYTE	UNITS	ADDED	RESULT	REC	#	RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	952	956	100		14		80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	952	884	93		6		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	952	887	93		15		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	952	778	82		13		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	952	1090	114		30	*	79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	952	818	86		8		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	952	827	87		4		84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	952	944	99		2		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	952	848	89		2		67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	952	1040	109		1		64 - 127	0 - 20
4-Nitrotoluene	ug/kg	952	928	97		.2		71 - 124	0 - 20
НМХ	ug/kg	952	794	83		29	*	74 - 124	0 - 20
Nitrobenzene	ug/kg	952	927	97		1		80 - 128	0 - 20
Nitroglycerin	ug/kg	952	925	97		9		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	952	915	96		3		72 - 128	0 - 20
RDX	ug/kg	952	808	85		.9		67 - 129	0 - 20
Tetryl	ug/kg	952	769	81		5		68 - 135	0 - 20

RPD : 2 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 1 out of 34 outside limits

* Values outside of QC limits

EPA 8330B REPLICATE SUMMARY

Report No:	218081814	Parent Sample ID:	WIL02IS03	
Prep Method:	EPA 8330B	Parent GCAL ID:	21808181407	
Prep Date:	8/24/2018 6:00:00 PM	Prep Batch:	642680	
Analytical Method:	EPA 8330B			

ANALYTE	CAS	UNITS	PARENT RESULT	REP #1 RESULT (1843104)	REP #2 RESULT (1843105)	%RSD	#
1,3,5-Trinitrobenzene	99-35-4	ug/Kg	0	0	0	0	
1,3-Dinitrobenzene	99-65-0	ug/Kg	0	0	0	0	
2,4,6-Trinitrotoluene	118-96-7	ug/Kg	0	0	0	0	
2,4-Dinitrotoluene	121-14-2	ug/Kg	0	0	0	0	
2,6-Dinitrotoluene	606-20-2	ug/Kg	0 (20)	0	0	0	
2-Amino-4,6-dinitrotoluene	35572-78-2	ug/Kg	0	0	0	0	
2-Nitrotoluene	88-72-2	ug/Kg	0	0	0	0	
3,5-Dinitroaniline	618-87-1	ug/Kg	0	0	0	0	
3-Nitrotoluene	99-08-1	ug/Kg	0	0	0	0	
4-Amino-2,6-dinitrotoluene	19406-51-0	ug/Kg	0	0	0	0	
4-Nitrotoluene	99-99-0	ug/Kg	0	0	0	0	
НМХ	2691-41-0	ug/Kg	0	0	0	0	
Nitrobenzene	98-95-3	ug/Kg	0	0	0	0	
Nitroglycerin	55-63-0	ug/Kg	0	0	0	0	
Pentaerythritol Tetranitrate	78-11-5	ug/Kg	0	0	0	0	
RDX	121-82-4	ug/Kg	0	0	0	0	
Tetryl	479-45-8	ug/Kg	0	0	0	0	

* - RSD greater than 20%

2F ORGANIC SURROGATE RECOVERY

Report No: 218081814		Analytical Method: EPA 8330B								
Client Sample ID	GCALSample ID	SMC1	#	SMC2	#	SMC3	#	SMC4	#	тот out
WIL02IS01	21808181401	103								0
WIL02IS01 MS	21808181402	99				_				0
WIL02IS01 MSD	21808181403	95								0
WIL02IS02	21808181404	94	П						П	0
WIL02IS03	21808181407	89	П						Π	0
MB1843101	1843101	110	П							0
WIL02IS03DUP	1843104	97	П							0
WIL02IS03DUP	1843105	101							П	0
GRBLK for HBN 642680 [EXTO/549	1843106	97							Π	0
LCS1843214	1843214	86	П							0
LCSD1843215	1843215	94								0

QC LIMITS

150

50

SMC 1 : 1,2-Dinitrobenzene

SMC 2 :

- SMC 3 :
- SMC 4 :

- # Column to be used to flag recovery limits
- * Value outside of QC limits
- D Surrogate diluted out

4C ORGANIC METHOD BLANK SUMMARY

Report No:	218081814		Method Blank ID:	thod Blank ID: 1843101				
Matrix:	Solid		Instrument ID:	HPLC3				
Sample Amt:	<u>10 g</u>		Lab File ID:	2180830\A19				
Injection Vol.:	1.0	(µL)	GC Column:	ARC18	ID	3	(mm)	
Prep Final Vol.:	40000	(µL)	Dilution Factor:	1	Analyst:	MEG		
Prep Date:	08/24/18		Analysis Date:	08/30/18	Time:	1641		
Prep Batch:	642680		Analytical Batch:	643050				
Prep Method:	8330B		Analytical Method:	EPA 8330B				
20				¥7				

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD

		GCAL	DATE	TIME	INSTRUMENT
	CLIENT SAMPLE ID	SAMPLE ID	ANALYZED	ANALYZED	ID
1.	WIL02IS01	21808181401	08/30/18	1741	HPLC3
2.	WIL02IS01 MS	21808181402	08/30/18	1800	HPLC3
3.	WIL02IS01 MSD	21808181403	08/30/18	1820	HPLC3
4.	WIL02IS02	21808181404	08/30/18	1840	HPLC3
5.	WIL02IS03	21808181407	08/30/18	1900	HPLC3
6.	WIL02IS03DUP	1843105	08/30/18	1919	HPLC3
7.	WIL02IS03DUP	1843104	08/30/18	1939	HPLC3
8.	GRBLK for HBN 642680 [EXTO/549]	1843106	08/30/18	1959	HPLC3
9.	LCS1843214	1843214	08/30/18	2019	HPLC3
10.	LCSD1843215	1843215	08/30/18	2039	HPLC3

'EC	CH	27KJ		8/800 DAT		45/18 /1	BATCH	642680
#	CLIENT	TYPE	CLIENT ID	GCAL ID	INITIAL WGT (g)	FINAL VOL (mL)	COMMENT	REAGENTS
1	QC	MB	MB 1843101	1843101	ID.O	40		8330 Surrogate 4/10ug/ml / Volume
2	QC	LCS	SRM 1843102 ** Use SRM **	1843102	IA.D	40		103-21-8
3	QC	LCSD	SRMD 1843103 ** Use SRM **	1843103	ID.D	4-2		8330 Spike 4/10ug/ml / Volume 1.0m
4	4838	SAMP	WIL02IS01	21808181401	10.1	'HP		103-23-1
5	4838	MS	WIL02IS01 MS	21808181402	IP.I	HO		Solid Reference Material
6	4838	MSD	WIL02IS01 MSD	21808181403	ID.O	AD		2181150
7	4838	SAMP	WIL021502	21808181404	10.5	HO		HPLC Water
B	4838	SAMP	WIL02IS03	21808181407	10.D	HO		4120789
9	QC	DUP	DUP 1843105	1843105	10.0	40		Acetonitrile
0	QC	DUP	DUP 1843104	1843104	10.0	U.O		212906 4
11	QC	GRBLK	GRBLK 1843106	1843106	10.0	40		Sand
12	QC	LCS	SRM 1843214 ** Use SRM **	1843214	10.0	dA	spile,	
13	QC	LCSD	SRMD 1843215 ** Use SRM **	1843215	10.0	if	Shelle	
14							1940	
15								
16			· · · · · · · · · · · · · · · · · · ·					
17								
18	••••							
19	-						1 .	
20								ļ
21			2					
22								1.
23	*		· ····································					
24								1
25								
26		•						1
27	4							
28	1	al -						1
29			×				1	
30		-			+			1 .
_					.J			
EQ	UIPMEN	ILCONDI	LIONS					
ВA	LANCE ID	D	3					
	*	V				I		
NC	DIES	Detail for 1	h Dula 0220B C EY					<u> </u>
Ma	itrix-Solid. I	aich Batc	n Rule 53305_5_EA.					
	3 							
	i							
	•	5						
r		$\Delta_{\rm c}$						
		• • •		2				

۰.

NALL S

EVAND.

1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081814				Client Sample ID:	MB1843101			
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1843101			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180830\A19			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/24/18				Analysis Date:	08/30/18	Time:	1641	
Prep Batch:	642680				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	U	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200
1D ORGANICS ANALYSIS DATA SHEET

Report No:	218081814				Client Sample ID:	GRBLK for HB	N 642680 [I	EXTO/549	
Collect Date:	NA	Time:	NA		GCAL Sample ID:	1843106			
Matrix:	Solid	% Moisture:	NA		Instrument ID:	HPLC3			
Sample Amt:	10	g			Lab File ID:	2180830\A29			
Injection Vol.:	1.0			(µL)	GC Column:	ARC18	ID	3	(mm)
Prep Final Vol.:	40000			(µL)	Dilution Factor:	1	Analyst:	MEG	
Prep Date:	08/24/18				Analysis Date:	08/30/18	Time:	1959	
Prep Batch:	642680				Analytical Batch:	643050			
Prep Method:	8330B				Analytical Method:	EPA 8330B			

CONCENTRATION UNITS: ug/kg

CAS	ANALYTE	RESULT	Q	DL	LOD	LOQ
99-35-4	1,3,5-Trinitrobenzene	100	U	42.0	100	200
99-65-0	1,3-Dinitrobenzene	100	U	77.0	100	200
118-96-7	2,4,6-Trinitrotoluene	100	Ŭ	51.0	100	200
121-14-2	2,4-Dinitrotoluene	100	U	99.0	100	200
606-20-2	2,6-Dinitrotoluene	100	U	61.0	100	200
35572-78-2	2-Amino-4,6-dinitrotoluene	100	U	98.0	100	200
88-72-2	2-Nitrotoluene	100	U	64.0	100	200
618-87-1	3,5-Dinitroaniline	100	U	83.0	100	200
99-08-1	3-Nitrotoluene	150	U	125	150	200
19406-51-0	4-Amino-2,6-dinitrotoluene	100	U	77.0	100	200
99-99-0	4-Nitrotoluene	100	U	77.0	100	200
2691-41-0	HMX	100	U	26.0	100	200
98-95-3	Nitrobenzene	100	U	36.0	100	200
55-63-0	Nitroglycerin	100	U	74.0	100	200
78-11-5	Pentaerythritol Tetranitrate	150	U	122	150	200
121-82-4	RDX	100	U	18.0	100	200
479-45-8	Tetryl	100	U	41.0	100	200

SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081814		
Prep Method:	8330B	Prep Batch:	642680
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 1843214							
ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	LCS RESULT	LCS % REC	#	QC LIMITS
1,3,5-Trinitrobenzene	ug/kg	1000	0	807	81		80 - 116
1,3-Dinitrobenzene	ug/kg	1000	0	787	79		73 - 119
2,4,6-Trinitrotoluene	ug/kg	1000	0	747	75		71 - 120
2,4-Dinitrotoluene	ug/kg	1000	0	862	86		75 - 121
2,6-Dinitrotoluene	ug/kg	1000	0	815	81		79 - 117
2-Amino-4,6-dinitrotoluene	ug/kg	1000	0	757	76		71 - 123
2-Nitrotoluene	ug/kg	1000	0	913	91		84 - 120
3,5-Dinitroaniline	ug/kg	1000	0	875	87		86 - 118
3-Nitrotoluene	ug/kg	1000	0	708	71		67 - 129
4-Amino-2,6-dinitrotoluene	ug/kg	1000	0	739	74		64 - 127
4-Nitrotoluene	ug/kg	1000	0	816	82		71 - 124
HMX	ug/kg	1000	0	833	83		74 - 124
Nitrobenzene	ug/kg	1000	0	819	82		80 - 128
Nitroglycerin	ug/kg	1000	0	782	78		73 - 124
Pentaerythritol Tetranitrate	ug/kg	1000	0	836	84		72 - 128
RDX	ug/kg	1000	0	822	82		67 - 129
Tetryl	ug/kg	1000	0	827	83		68 - 135

RPD : 1 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

* Values outside of QC limits

SOIL ORGANICS LCS/LCSD RECOVERY

Report No:	218081814		
Prep Method:	8330B	Prep Batch:	642680
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 1843215

		SPIKE	LCSD	LCSD		%		QC	LIMITS
ANALYTE	UNITS	ADDED	RESULT	% REC	#	RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	1000	910	91		12	Г	80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	1000	872	87		10		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	1000	842	84		12		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	1000	882	88		2		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	1000	877	88		7		79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	1000	888	89		16		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	1000	959	96		5		84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	1000	902	90		3		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	1000	845	84		18		67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	1000	872	87		16	T	64 - 127	0 - 20
4-Nitrotoluene	ug/kg	1000	1100	110		30	*	71 - 124	0 - 20
НМХ	ug/kg	1000	829	83		.4		74 - 124	0 - 20
Nitrobenzene	ug/kg	1000	904	90		10		80 - 128	0 - 20
Nitroglycerin	ug/kg	1000	854	85		9		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	1000	839	84		.3		72 - 128	0 - 20
RDX	ug/kg	1000	909	91		10		67 - 129	0 - 20
Tetryl	ug/kg	1000	916	92		10		68 - 135	0 - 20

RPD : 1 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

* Values outside of QC limits

SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081814	Parent Sample ID:	WIL02IS01
Prep Method:	8330B	Prep Batch:	642680
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 21808181402				MC			
ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	RESULT	MS % REC	#	QC LIMITS
1,3,5-Trinitrobenzene	ug/kg	990	0	975	98		80 - 116
1,3-Dinitrobenzene	ug/kg	990	0	916	92		73 - 119
2,4,6-Trinitrotoluene	ug/kg	990	0	908	92		71 - 120
2,4-Dinitrotoluene	ug/kg	990	0	863	87		75 - 121
2,6-Dinitrotoluene	ug/kg	990	0	991	100		79 - 117
2-Amino-4,6-dinitrotoluene	ug/kg	990	0	895	90		71 - 123
2-Nitrotoluene	ug/kg	990	0	909	92		84 - 120
3,5-Dinitroaniline	ug/kg	990	0	889	90		86 - 118
3-Nitrotoluene	ug/kg	990	0	871	88		67 - 129
4-Amino-2,6-dinitrotoluene	ug/kg	990	0	898	91		64 - 127
4-Nitrotoluene	ug/kg	990	0	976	99		71 - 124
HMX	ug/kg	990	0	834	84		74 - 124
Nitrobenzene	ug/kg	990	0	1030	104		80 - 128
Nitroglycerin	ug/kg	990	0	904	91		73 - 124
Pentaerythritol Tetranitrate	ug/kg	990	0	986	100		72 - 128
RDX	ug/kg	990	0	891	90		67 - 129
Tetryl	ug/kg	990	0	720	73		68 - 135

RPD : _____ out of ____7__ outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

* Values outside of QC limits

SOIL ORGANICS MS/MSD RECOVERY

Report No:	218081814	Parent Sample ID:	WIL02IS01
Prep Method:	8330B	Prep Batch:	642680
Analytical Method:	EPA 8330B	Analytical Batch:	643050

GCAL QC ID: 21808181403

CCAL QC 1D. 21000101403		ODIKE		MCD %		0/		00	
ANALYTE	UNITS	ADDED	RESULT	REC	#	70 RPD	#	REC	RPD
1,3,5-Trinitrobenzene	ug/kg	1000	922	92		6		80 - 116	0 - 20
1,3-Dinitrobenzene	ug/kg	1000	887	89		3		73 - 119	0 - 20
2,4,6-Trinitrotoluene	ug/kg	1000	903	90		.6		71 - 120	0 - 20
2,4-Dinitrotoluene	ug/kg	1000	896	90		4		75 - 121	0 - 20
2,6-Dinitrotoluene	ug/kg	1000	851	85		15		79 - 117	0 - 20
2-Amino-4,6-dinitrotoluene	ug/kg	1000	910	91		2		71 - 123	0 - 20
2-Nitrotoluene	ug/kg	1000	972	97		7		84 - 120	0 - 20
3,5-Dinitroaniline	ug/kg	1000	872	87		2		86 - 118	0 - 20
3-Nitrotoluene	ug/kg	1000	925	92		6		67 - 129	0 - 20
4-Amino-2,6-dinitrotoluene	ug/kg	1000	958	96		7		64 - 127	0 - 20
4-Nitrotoluene	ug/kg	1000	959	96		2		71 - 124	0 - 20
НМХ	ug/kg	1000	798	80		4		74 - 124	0 - 20
Nitrobenzene	ug/kg	1000	872	87		16		80 - 128	0 - 20
Nitroglycerin	ug/kg	1000	879	88		3		73 - 124	0 - 20
Pentaerythritol Tetranitrate	ug/kg	1000	902	90		9		72 - 128	0 - 20
RDX	ug/kg	1000	847	85		5		67 - 129	0 - 20
Tetryl	ug/kg	1000	726	73		.8		68 - 135	0 - 20

RPD : 0 out of 17 outside limits

Column to be used to flag recovery and RPD values with an asterisk

Spike Recovery: 0 out of 34 outside limits

* Values outside of QC limits

DATA VALIDATION WORKSHEET INORGANIC - ICPMS (Sb, Cu, Pb, Zn)

SDG No.: <u>218081812+13+14</u>

Project No.: 60520956

Project:Williston LTAReviewer:Naoum TavantzisDate:October 24, 2018

<u>X</u> USEPA CLP National Functional Guidelines for Superfund Inorganic Methods Data Review

<u>X</u> SW-846/DoD QSM v5.1

X Project QAPP/SAP

1.0 Cl	hain of Custody/Sample Condition/Raw Data	Yes	No	NA
1.1	Do Chain-of-Custody forms list all samples which were analyzed?	X		
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?	X		
1.3	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition of		x	
	samples, analytical problems or special circumstances affecting the quality of the data?			
1.4	Does sample preservation, collection and storage meet method requirement? (For metal: water samples: with Nitric	v		
	Acid to pH < 2, and soil/sediment samples: $4 {}^{\circ}C \pm 2 {}^{\circ}C$). Action: Professional judgement or J-(+)/R(-)	Λ		
1.5	Are the digestion logs present and complete with pH values, sample weights, dilutions, final volumes. % solids (for			
	soil samples), and preparation dates? For any missing or incomplete documentation, contact the laboratory for	Χ		
	explanation/resubmittal.			
1.6	Were the sediment samples dryed and sieved appropriately?	X		
1.7	Are the measurement read out records legible and complete (properly labeled, and include all samples and QC)?	X		
Note:				

2.0 H	olding Time	Yes	No	NA
2.1	Have any technical holding times of 6 months, determined from date of collection to date of analysis, been exceeded?		X	
	Action: Use professional judgement, then J-(+)/R(-)			
Note:				

3.0 In	strument Calibration	Yes	No	NA
3.1	Are the Quartlery LOD establishment forms provided for each instrument?	X		
3.2	Is the signal/noise ratio less than 3:1? If not, is the determination repeated at a higher concentration?	X		
3.3	Are sufficient standards of a blank + one standard & a RL standard OR 3 standards and a blank with one standard at	v		
	the RL included in the calibration curve? If not, qualify with "R".	Λ		
3.3.a	If more than one standard is used, are the correlation coefficients > 0.995 ? Action: J(+)/UJ(-).	X		
3.4	Was an initial calibration check standard (ICV) analyzed immediately after instrument system had been calibrated?	v		
	Action: If no, all associated data are rejected "R".	Λ		
3.5	Was continuing calibration (CCV) analyzed at a minimum frequency of 10% (every 10 samples) during and at the	X		
	end of the analytical run? If not, document and flag based on professional judgement.			
	Are all calibration standard percent recoveries within the control limits of 90%-110%? ICV and CCV:			
3.6	<75% 75%-89% 111%-125% 125%<%R<160% >160%	Χ		
	Action: $J_{-}(+)/R(-)$ $J_{-}(+)/UJ(-)$ $J_{+}(+)$ $J_{+}(+)(maybe R(+))$ $R(+)$			
3.7	Was the high-level check standard included within 10% of the true value?	X		
Note:				

4.0 B	anks	Yes	No	NA		
4.1	Were method blank (MB) prepared at the appropriate frequency (one / 20 samples, batch, or matrix)?	X				
4.2	Were calibration blanks (ICB and CCBs) analyzed immediately after each ICV and CCVs?	X				
4.3	Are there reported ICB/CCBs values > DL? If yes, refer to action table.		X			
4.4	Are there negative ICB/CCB blank results with the absolute value > LOD? If yes use 5x rule		X			
4.5	Are there reported MB values > LOD? If yes use 5x rule	X				
4.6	Are there negative method blank results with the absolute value > LOD? If yes use 5x rule		X			
4.7	Are there reported field blank or equipment blank $> \pm$ DL? If yes use 5x rule	X				
Note:	Note: MB in batch 642222 had a detection for zinc at 518 ug/kg. Equipment blank had detections for antimony (0.74 ug/L) and copper (0.26 ug/L)					

5.0 Laboratory Control Sample (LCS)							No	NA
5.1	Was an LCS prepar	Was an LCS prepared and analyzed at the correct frequency (one / 20 samples, batch, or matrix)? Action: If no,						
	J(+)/R(-) any sample	J(+)/R(-) any sample not associated with LCS results.						
5.2	Is any LCS recover	s any LCS recovery outside the control limits?						
	% Recoveries:	<40%	40%-LCL%	>UCL,<130%	>150%		Χ	
		J-(+)/R(-)	J-(+)/UJ(-)	J+(+)	R(+/-)			

Note:

6.0 ICP Interference Check Sample (ICS)						Yes	No	NA
6.1	Was ICS analyzed at begins	ning of each ICP run and ever	y 12 hours?			X		
6.2	Are the ICS AB recoveries	within 80% - 120%?				X		
6.3	Are the results for unspiked analytes (in ICS A) <loq?< td=""><td></td><td></td></loq?<>							
6.4	If not, are the associated sample Al, Ca, Fe, and Mg concentrations less than the level in the ICS?							
	Action: Not	Spiked Analytes	Spiked ana	lytes				
	False negative	False Positive	< 50%	50%-79%	120%			
	≥DL, but <10x -[ICS]	≥DL						
	J-(+)/UJ(-)	J+(+)	R(-)	J-(+)/UJ(-)	J+(+)			
Note:								

7.0 La	aboratory Duplicates (MD)	Yes	No	NA
7.1	Were Laboratory duplicates prepared and analyzed at the correct frequency (one / 20 samples, batch, or matrix)? If no, J(+), using professional judgement, analytes not associated with duplicate results.	X		
7.2	Are all RPDs less than 20%? If no, qualify all associated field samples J(+)/UJ(-) for the batch.	X		
Note:				

8.0 M	Matrix/Matrix Spike Duplicate		Yes	No	NA		
8.1	Was a spiked sample prepared and analyzed at the correct frequency (one / 20 samples, batch,	or matrix)? If not,	N7				
	J(+) with professional judgement.		Х				
	Are any MS/MSD recovery outside the control limits?						
87	For all analytes with sample concentration, 4x spike concentration:	V					
0.2	Matrix Spike %R <30% 30%-74% >125%		Λ				
	No PDS, Action: $J-(+)/R(-, reanalyze)$ $J-(+)/UJ(-)$ $J+(+)$						
	Matrix Spike %R <30% 30%-74% >125%						
	PDS%R $<75\%$ $\geq75\%$ $<75\%$ $\geq125\%$	70					
	Action J-(+)/R(-) J(+)/UJ(-) J-(+)/UJ(-) J(+)/UJ(-) J(+) J+(+)					
8.3	Are all RPDs less than 20%? If no, qualify all associated field samples J(+) for the batch.		X				
Note:	Note: Matrix spikes on WIL02DA02A and WIL01IS02 - low recoveries for antimony in MS/MSD; WIL01IS02 high recovery for copper in MS.						

9.0 IC	CP/AA Serial Dilutions (Not for Mercury Analysis)	Yes	No	NA			
9.1	Were serial dilutions performed?	X					
9.2	Was a five-fold dilution performed?	X					
9.3	Were results agree within 10% for [sample] > 50 X DL in the original sample? If no, $J(+)/UJ(-)$		X				
9.4	Where dilution test fails or [sample]< $50xLOD$, was a post-digestion spike performed? Note any recoveries greater than $\pm 25\%D$ in DV report, but no data qualifying action is required.	X					
9.5	When both dilution test and post-digestion spikes do not pass, was a method of standard additions used to quantitate the reported sample concentration? If not, ask lab to comment.			X			
Note:	Note: WIL02DA02A in analytical sequence 642309 displayed a percent difference greater than 10% for zinc at 10.9%.						

10.0 I	Field Duplicate Samples	Yes	No	NA
10.1	Were any field duplicates submitted for metal analysis?	X		
	For sample results > 5 x RL, a control limit of $\leq 35\%$ RPD will be used. For sample results < 5 x RL, a control			
	limit of 2 x RL will be used.			
10.2	Are all analyte duplicate results within control limits? If not, J(+) the parent samples.	X		
Note:				

11.0 I	Result Verification/ Internal Standards/ Tune	Yes	No	NA
11.1	Are all DLs/RLs equal to or less than the reporting limits specified?	X		
11.2	Were all results and detection limits for solid-matrix samples reported on a dry-weight basis?	X		
11.3	Were all dilutions reflected in the positive results and detection limits?	X		
11.4	Is there an Internal Standard associated with all analytes? R(+/-)	X		
11.5	Were the Internal Standard recoveries within control limits? If not, J(+)/UJ(-)	X		
11.6	Was a tune performed? If not, R(+/-) all associated samples.	X		
11.7	Were the tunes run at a minimum of four times with $RSD < 5\%$ for analytes in solution? Action: $J(+)/UJ(-)$	X		
11.8	Were the tune mass calibrations < 0.1 amu from the true value? Action: J(+)/UJ(-)	X		
11.9	Was the resolution check peak width < 0.9 amu at 10% peak height? Action: J(+)/UJ(-)	X		
Note:				

12.0 (Completeness Calculation	Yes	No	NA
12.1	Is % completeness within the control limits? (Control limit 90%)	X		
12.2	Number of samples: <u>16</u>			
12.3	Number of target compounds in each analysis: 4			
12.4	Number of results rejected and not reported:0			
	% Completeness = $(12.1.1 \times 12.1.2 - 12.1.3) \times 100/(12.1.1 \times 12.1.2)$			
	% Completeness =100%			

XIV ANALYSIS RUN LOG

Ч Z ×× × × × × × × × × × × × × × × × × > F ß F Ś Si Ag Na 08/20/18 Start Date: 08/20/18 Se End Date: ¥ B Cd Ca Cr Co Cu Fe Pb Li Mg Mn Hg Mo Ni Analyte Symbols × × × × × × × × ×× EPA 6020B 642309 Analytical Method: AI Sb As Ba Be Analytical Batch: × × × × × × × × × × × × × × × × × × TIME 1305 1309 1313 1320 1342 1353 1252 1317 1324 1356 1400 1403 1734 1738 1831 1838 1841 1827 D/F Ľ GCAL SAMPLE ID 1841053 1800 1841052 1300 1302 1304 1305 1306 1600 1700 1803 2000 2100 2500 1800 1900 1150 1900 218081813 **ICPMS2 CLIENT SAMPLE ID** Instrument ID: Report No: LCS1841053 MB1841052 ITUNE IICAL5 IICALB ICAL6 LLCCV **IICAL2** IICAL4 ICSAB ICSA CCB 800 LDR S °S S <u>8</u> <u>≥</u>

FORM XIV - IN

GCAL Report#: 218081813

XIV ANALYSIS RUN LOG

Ч Z × × × × ×× × × × × × × × × × × × × × × × × × > F ي ک F ភ Na 08/20/18 08/20/18 Ъg ŝ Se Start Date: End Date: ¥ Li Mg Mn Hg Mo Ni Analyte Symbols Fe Pb × Co Cl × Ca C EPA 6020B 642309 ß ß Analytical Method: Be Analytical Batch: Al Sb As Ba × × × × × × × × × × × TIME 1305 1309 1313 1342 1353 1400 1810 1252 1320 1324 1356 1403 1734 1738 1806 1813 1820 1824 1838 1841 1317 1802 1817 DГF 10 50 9 5 10 9 9 Ч * GCAL SAMPLE ID 21808181210 1800 21808181208 21808181209 21808181206 21808181207 1841232 1841231 1304 1305 1600 1803 2100 2500 1800 1900 1900 1150 1300 1306 1700 2000 1302 218081812 **ICPMS2 CLIENT SAMPLE ID** VIL02DA02A MSD VIL02DA02APDS VIL02DA02A MS Instrument ID: VIL02DA02ASD WIL02DA01A WIL02DA01B VIL02DA02A Report No: ITUNE **IICAL5** IICALB **IICAL2** IICAL4 LCCV CSAB ICAL6 CSA BS LDR S 0< ß ŝ S B

FORM XIV - IN

GCAL Report#: 218081812

VIII ICP-MS TUNE

Report No:	218081812			GCAL QC ID:	1150
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\QCTune\2180820B_MS2-QCTu
Analyst:	AWG			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1253	Analytical Method:	EPA 6020B

ELEMENT - MASS	AVG MEASURED MASS (amu)	PEAK WIDTH AT 5% PEAK HEIGHT (amu)	%RSD
Be-9	9.05	.7887	.7645
Mg-24	24	.7914	.9917
Mg-25	25	.7928	1.2727
Mg-26	26	.8258	.4753
Co-59	58.95	.7864	.6309
In-115	115	.7729	1.2881
Pb-206	206	.8291	2.0969
Pb-207	206.95	.7931	1.9959
Pb-208	207.95	.8279	2.4434

Ш

INITIAL CALIBRATION VERIFICATION (ICV) STANDARD

Report No:	218081812		GCAL QC ID:	1600	
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\009_ICV.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1324	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	50.0	54.6	109		ug/L
Copper	50.0	52.0	104		ug/L
Lead	50.0	49.3	99		ug/L
Zinc	1000	1010 =	101		ug/L

CONTROL LIMITS 90-110%

III INITIAL CALIBRATION BLANK

Report No:	218081812		Blank ID:	1700	
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\1211_ICB.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1342	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

Ш

LOW LEVEL CONTINUING CALIBRATION VERIFICATION (LLCCV) STANDARD

Report No:	218081812			GCAL QC ID:	1803
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121211CCV1.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1353	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	2.00	1.90	95		ug/L
Copper	1.00	1.06	106		ug/L
Lead	1.00	0.990	99		ug/L
Zinc	20.0	21.2	106		ug/L

CONTROL LIMITS 80-120%

.

IV ICPMS INTERFERENCE CHECKS

Report No:	218081812	ICSA \ AB ID:	2000 \ 2100
Instrument ID:	ICPMS2	Analytical Batch:	642309
Analyst:	LWZ	Analytical Method:	EPA 6020B
Lab File ID ICSA1:	2180820B_MS2.b\121212ICSA.d	Lab File ID ICSAB1:	2180820B_MS2.b\121213ICSB.d
Lab File ID ICSA2:		Lab File ID ICSAB2:	

Concentration Units: ug/L

Analyzed (A/AB):		08/20/18 1356	08/20/18 1400			5 0		
ANALYTE	TRUE A	TRUE AB	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R
Aluminum	1000	1000	1010	999	100			
Antimony	0	0	0.039	0.031				
Arsenic	0	10.0	0.0030	10.3	103			
Barium	0	0	-0.0040	0.016				
Beryllium	0	0	-0.0010	-0.0010				
Boron	0	20.0	0.17	20.2	101			
Cadmium	0	10.0	0.017	10.1	101			
Calcium	3000	3000	2950	2980	99		1	
Chromium	0	20.0	0.088	20.8	104			
Cobalt	0	20.0	0.0040	21.0	105			
Copper	0	20.0	0.18	21.5	108			
Iron	2500	2500	2570	2510	100			
Lead	0	0	0.0040	-0.0020				
Lithium	0	20.0	-0.069	23.9	120			
Magnesium	1000	1000	1020	1020	102			
Manganese	0	20.0	0.035	20.6	103			
Molybdenum	20.0	20.0	19.5	19.3	96			
Nickel	0	20.0	0.032	21.3	106			
Potassium	1000	1000	1010	1010	101			
Selenium	0	10.0	-0.040	10.1	101			
Silicon	0	1000	-4500	-3500	-351			
Silver	0	5.00	0.0060	5.15	103			
Sodium	2500	2500	2540	2540	102			
Strontium	0	10.0	0.10	10.1	101			
Thallium	0	0	0.0	-0.0010				
Tin	0	10.0	0.040	7.34	73			
Titanium	20.0	20.0	19.4	19.3	96			
Vanadium	0	20.0	-0.015	17.6	88			
Zinc	0	20.0	0.029	21.1	106			
Zirconium	0	20.0	0.017	19.1	96			

II LINEAR DYNAMIC RANGE (LDR) STANDARD

Report No:	218081812	218081812		GCAL QC ID:	2500
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121214_QC1.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1403	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	1000	924	92		ug/L
Copper	1000	929	93		ug/L
Lead	1000	915	92		ug/L
Zinc	20000	18100	91		ug/L

CONTROL LIMITS 90-110%

Ш

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081812		GCAL QC ID:	1800	
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121269_CCV.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1734	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	19.9	99		ug/L
Copper	10.0	10.2	102	Γ	ug/L
Lead	10.0	9.84	98		ug/L
Zinc	200	201	100		ug/L

CONTROL LIMITS 90-110%

III CONTINUING CALIBRATION BLANK

Report No:	218081812			Blank ID:	1900
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121270_CCB.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1738	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

÷,

- 11

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081812			GCAL QC ID:	1800
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121287_CCV.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1838	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	19.7	99		ug/L
Copper	10.0	10.4	104		ug/L
Lead	10.0	9.61	96		ug/L
Zinc	200	196	98		ug/L

CONTROL LIMITS 90-110%

III CONTINUING CALIBRATION BLANK

Report No:	218081812			Blank ID:	1900
Instrument ID:	ICPMS2			Lab File ID:	2180820B_MS2.b\121288_CCB.d
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18	Time:	1841	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

FORM III - IN

•

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081812	Start Date:	08/20/18
Instrument ID:	ICPMS2	End Date:	08/20/18
Analytical Method	EPA 6020B	Analytical Batch:	642309

GCAL Internal Standards %RI								%RI Fo	r:							
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
WIL02DA02A	21808181206	1802	107		105		104		110		104		105		108	
WIL02DA02A MS	21808181207	1806	108		105		103		110		104		105		109	П
WIL02DA02A MSD	21808181208	1810	111		106		106		113		104		105		110	\square
WIL02DA02APDS	1841231	1813	113		107		106		116		106		108		113	\square
WIL02DA02ASD	1841232	1817	112		107		107		113		107		101		112	\square
WIL02DA01A	21808181209	1820	112		106		105		113		104	Γ	106		110	\square
WIL02DA01B	21808181210	1824	115		108		109		116		108		107		114	

ISTD 1: Bismuth (He)		ISTD 4:	Lutetium (He)	ISTD 7:	Terbium (He)
ISTD 2: Germanium (He)	ISTD 5:	Rhodium (He)		
ISTD 3: Indium (He)		ISTD 6:	Scandium (He)		

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081812	5	Start Date:	08/20/18
Instrument ID:	ICPMS2	E	End Date:	08/20/18
Analytical Method	EPA 6020B	/	Analytical Batch:	642309

		Internal Standards %RI For:														
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11	Q	ISTD12	Q	ISTD13	Q	ISTD14	Q
WIL02DA02A	21808181206	1802	92		99		98		99		97		106		99	\square
WIL02DA02A MS	21808181207	1806	100		102		102	1	107		101		109		107	
WIL02DA02A MSD	21808181208	1810	100		101		102		106		100		110		105	
WIL02DA02APDS	1841231	1813	104		103		105		110		103		110		109	
WIL02DA02ASD	1841232	1817	109		105		109		113		107		105		111	
WIL02DA01A	21808181209	1820	104		103		106		110		102		110		108	\square
WIL02DA01B	21808181210	1824	101		102		105		108		101		108		107	

. 9	2	ISTD 8:	Bismuth (No Gas)	ISTD 11	* Lutetium (No Gas)	ISTD 14	Terbium (No Gas)
		ISTD 9:	Germanium (No Gas)	ISTD 12	Rhodium (No Gas)		
		ISTD 10	Indium (No Gas)	ISTD 13	Scandium (No Gas)		

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	port No: 218081813						Sta	rt Date:		08	3/20	/18					
Instrument ID:	ICPMS2						En	d Date:		08	3/20	/18					
Analytical Method	EPA 6020B				Analytical Batch:			ch: <u>64</u>	642309								
		GCAL						Intern	als	Standar	ds	%RI Fo	r:				
CLIENT SAMPLE I	D	SAMPLE ID	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
MB1841052		1841052	1827	114		102		107		111		108		96		110	
LCS1841053		1841053	1831	116		105		109		118		108		97		116	

ISTD 1: Bismuth (He) ISTD 4: Lutetium (He) ISTD 7: Terbium (He) ISTD 2: Germanium (He) ISTD 5: Rhodium (He) ISTD 3: Indium (He) ISTD 6: Scandium (He)

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813			S	Star	t Date:		08/	08/20/18						_		
Instrument ID:	ICPMS2					E	Ind	Date:		08/	20/	18					_
Analytical Method	I Method EPA 6020B					А	na	lytical Ba	atch	n: <u>642</u>	230	9				_	_
		GCAL				_		Intern	al S	Standar	ds	%RI Fo	r:				٦
CLIENT SAMPLE	ID	SAMPLE ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11	Q	ISTD12	Q	ISTD13	Q 1	STD14	Q
MB1841052		1841052	1827	105		101		107		109		107		102	Т	108	
LCS1841053		1841053	1831	108		105		112		117		107		104		115	

ISTD 8:Bismuth (No Gas)ISTD 11Lutetium (No Gas)ISTD 14Terbium (No Gas)ISTD 9:Germanium (No Gas)ISTD 12Rhodium (No Gas)ISTD 12Rhodium (No Gas)ISTD 10Indium (No Gas)ISTD 13Scandium (No Gas)ISTD 14Isto 14

			. Series			1	_			1		T	1				_	-	_
I		1		Ā															
				Ŗ	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
				>			Γ		Γ										
				μ															
				ຮ	F		\square											F	
				F	F		┢						⊢	⊢	⊢			┢	┢
				പ്	┢─	┝─		┢╌				┢	\vdash	\vdash	⊢	⊢			
				5	┢	┢─	┝	⊢			┝	┝	\vdash	\vdash	\vdash				-
118	1/18			5	┝	┢	┢				⊢	⊢	⊢	⊢	⊢	⊢	-	-	\vdash
8/2	38/2			10	\vdash	┢─	┝	┢─	-		\vdash	┝	-	┝	\vdash	\vdash			-
	0			e Q	\vdash	┢╌		┝				┝	-	⊢	\vdash		-	\vdash	
Date	ate:			^v	⊢	┝──	┝─		\vdash	\vdash	⊢	┝	⊢	⊢	\vdash			-	-
art	D P				┝	┝	-	-		╞	┝	⊢	\vdash	⊢	\vdash	-	-	-	-
ທັ	ш			ž	-	-	\vdash	┝		\vdash	┝	<u> </u>	┡	⊢					
			pols	Мq	┝	┡	⊢	┝			⊢	┡			┣—				
			M	Ĭ	┝								<u> </u>	┝	_	_			
			rte S	Ň		┞		L		-	-	 	L	ļ					
			len	ž	L				_	<u> </u>									
1			◄														_		
				5	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
				ъ															
				2	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
				ပိ						L			L						
	В			ບັ															
2	602(ပ္မ															
423	PA (ខ				Γ			Γ	Γ						Γ	
ά	ш			B		Γ													
Ë	:pot			Be								Γ							
Batc	Meth			Ba															
ical	ical			As															
alyti	alyti			ß	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
An	An			Ā		⊢	i –				⊢		-	-			-		
			<u> </u>	ш		5	5	<u>с</u>	2	2	Ģ	5	<u></u>	2	~	Σ	80	en i	ω
				TIM	093	10	102	103	103	5	5	105	12	11	11	112	113	14	115
					\vdash	-	-				H	-							
				D/F	-	-		-	-	-	-	-	-	-	-	-	-	-	-
1				LL.	⊢	┝		<u> </u>	_	_			_					\vdash	
				Q,	+	+	-	*	*	*	*	*	*	*	*	*	*	*	*
			, u	ų													8	6	
			CAL		1150	1300	1302	1304	1305	1306	160	1700	1803	200	2100	2500	408	408	180
	21		6	Ĩ,	-					1	-						18	Ψ	ľ
2					⊢			-							-			-	
3181	S1									1									
180	PM																		
0	Ξ	I		9															
	•••			PLE															
ä	ă D			SAM														6	
й	mer			NTS		_							5		_		4081	3408	
epor	stru			LIE)	NNE	CALE	SALS	CAL4	CALS	CALE	2	œ.	Ю С	Š	SAB	Ř	B184	CS18	2
Ľ	<u> </u>			C	E	l≚.	I≚_	<u>ĭĭ</u>	<u>ا</u> قا	I≚.	ĽΣ	lΥ		<u>12</u>	<u>12</u>		Σ	Ľ	O

×

×

×

×

1200

1900

CCB

FORM XIV - IN

GCAL Report#: 218081812 ·

XIV ANALYSIS RUN LOG

XIV ANALYSIS RUN LOG

Ч Zn × × × × × × × × × × × × × × × > F ผู F Si Ag Na Sr 08/21/18 Start Date: 08/21/18 K Se End Date: Cd Ca Cr Co Cu Fe Pb Li Mg Mn Hg Mo Ni Analyte Symbols \times × EPA 6020B 642381 6 Analytical Method: Ba Be Analytical Batch: AI Sb As × × × × × × × × × × × × × × × TIME 0930 1033 1023 1027 1042 1046 1055 1108 1112 1117 1156 1200 1121 1151 1037 D/F Ц 21808181303 GCAL SAMPLE ID 1300 1302 1304 1305 1306 1600 1700 2000 2100 2500 1150 1803 1800 1900 218081813 **ICPMS1 CLIENT SAMPLE ID** Instrument ID: Report No: WIL03IS00 ITUNE IICALB IICAL4 **IICAL5 IICAL6** IICAL2 ICSAB LLCCV ICSA CCB LDR 2 S <u>CB</u> ջ

FORM XIV - IN

GCAL Report#: 218081813

VIII ICP-MS TUNE

Report No:	218081812			GCAL QC ID:	1150
Instrument ID:	ICPMS1			Lab File ID:	2180821A_MS1.b\QCTune\2180821A_MS1-QCTu
Analyst:	AWG			Analytical Batch:	642381
Analysis Date:	08/21/18	Time:	0931	Analytical Method:	EPA 6020B

ELEMENT - MASS	AVG MEASURED MASS (amu)	PEAK WIDTH AT 5% PEAK HEIGHT (amu)	%RSD
Be-9	9	.7803	.2982
Mg-24	23.9	.7774	.8215
Mg-25	24.9	.7735	.9524
Mg-26	25.9	.7497	.5087
Co-59	58.95	.7688	.6382
In-115	115	.7517	.5548
Pb-206	206	.7916	.8925
Pb-207	207	.8145	1.0512
Pb-208	208	.8111	.8122

li

INITIAL CALIBRATION VERIFICATION (ICV) STANDARD

Report No:	218081812		GCAL QC ID:	1600	
Instrument ID:	ICPMS1		Lab File ID:	2180821A_MS1.b\009_ICV.d	
Analyst:	LWZ			Analytical Batch:	642381
Analysis Date:	08/21/18	Time:	1046	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	50.0	52.2	104		ug/L
Copper	50.0	50.1	100		ug/L
Lead	50.0	48.8	98		ug/L
Zinc	1000	994	99		ug/L

CONTROL LIMITS 90-110%

III INITIAL CALIBRATION BLANK

Report No:	218081812		Blank ID:	1700					
Instrument ID:	ICPMS1		Lab File ID:	2180821A_MS1.b\011_ICB.d	_				
Analyst:	LWZ			Analytical Batch:	642381	_			
Analysis Date:	08/21/18	Time:	1055	Analytical Method:	EPA 6020B	_			

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

II LOW LEVEL CONTINUING CALIBRATION VERIFICATION (LLCCV) STANDARD

Report No:	218081812			GCAL QC ID:	1803
Instrument ID:	ICPMS1			Lab File ID:	2180821A_MS1.b\014CCV1.d
Analyst:	LWZ			Analytical Batch:	642381
Analysis Date:	08/21/18	Time:	1108	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	2.00	2.07	103		ug/L
Copper	1.00	0.810	81		ug/L
Lead	1.00	0.980	98		ug/L
Zinc	20.0	20.8	104		ug/L 🛛

CONTROL LIMITS 80-120%

IV

ICPMS INTERFERENCE CHECKS

Report No:	218081812	ICSA \ AB ID:	2000 \ 2100
Instrument ID:	ICPMS1	Analytical Batch:	642381
Analyst:	LWZ	Analytical Method:	EPA 6020B
Lab File ID ICSA1:	2180821A_MS1.b\015ICSA.d	Lab File ID ICSAB1:	2180821A_MS1.b\016ICSB.d
Lab File ID ICSA2:		Lab File ID ICSAB2:	

Concentration Units: ug/L

	Anal	yzed (A/AB):	08/21/18 1112	08/21/18 1117				
ANALYTE	TRUE A	TRUE AB	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R
Aluminum	1000	1000	1010	1010	101			
Antimony	0	0	0.063	0.065				
Arsenic	0	10.0	-0.0010	10.3	103			
Barium	0	0	0.039	0.034				
Beryllium	0	0	0.0	0.0				
Boron	0	20.0	1.21	20.2	101			
Cadmium	0	10.0	0.027	10.1	101			
Calcium	3000	3000	2960	3010	100			
Chromium	0	20.0	0.0060	20.4	102			
Cobalt	0	20.0	0.014	20.8	104			
Copper	0	20.0	-0.17	20.2	101			
Iron	2500	2500	2530	2510	100			
Lead	0	0	-0.0040	-0.0090			1	
Lithium	0	20.0	-0.051	22.7	114			
Magnesium	1000	1000	1010	1010	101			
Manganese	0	20.0	0.031	20.8	104			
Molybdenum	20.0	20.0	19.2	19.0	95		1	
Nickel	0	20.0	0.022	21.2	106		1	
Potassium	1000	1000	1020	992	99			
Selenium	0	10.0	0.063	10.1	101			
Silicon	0	1000	-23	1100	110		(1) · · · · · · · ·	
Silver	0	5.00	0.0070	5.15	103			
Sodium	2500	2500	2590	2570	103			
Strontium	0	10.0	0.094	9.55	96			
Thallium	0	0	-0.067	-0.069				
Tin	0	10.0	0.010	7.32	73			
Titanium	20.0	20.0	20.5	20.0	100			
Vanadium	0	20.0	-0.0020	17.4	87		1	
Zinc .	0	20.0	0.27	21.6	108			
Zirconium	0	20.0	0.027	18.8	94			

2

Ш

LINEAR DYNAMIC RANGE (LDR) STANDARD

Report No: 218081812				GCAL QC ID:	2500				
Instrument ID:	ICPMS1		Lab File ID:	2180821A_MS1.b\017_QC1.d					
Analyst:	LWZ			Analytical Batch:	642381				
Analysis Date:	08/21/18 Time: <u>1121</u> A		Analytical Method:	EPA 6020B					

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS		
Antimony	1000	901	90		ug/L		
Copper	1000	1030	103		ug/L		
Lead	1000	928	93		ug/L		
Zinc	20000	18500	93	3	ug/L		

CONTROL LIMITS 90-110%

FORM II - IN

Ш

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081812			GCAL QC ID:	1800				
Instrument ID:	ICPMS1		Lab File ID:	2180821A_MS1.b\024_CCV.d					
Analyst:	LWZ		Analytical Batch:	642381					
Analysis Date:	08/21/18	Time:	1156	Analytical Method:	EPA 6020B				

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	20.0	100		ug/L
Copper	10.0	10.1	101		ug/L
Lead	10.0	9.57	96		ug/L
Zinc	200	205	102		ug/L

CONTROL LIMITS 90-110%

III CONTINUING CALIBRATION BLANK

Report No: 218081812				Blank ID:	1900					
Instrument ID:	ICPMS1			Lab File ID:	2180821A_MS1.b\025_CCB.d					
Analyst:	LWZ			Analytical Batch:	642381					
Analysis Date:	08/21/18	Time:	1200	Analytical Method:	EPA 6020B					

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

FORM III - IN

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No: 218081812							Sta	rt Date:		08	/21	/18					_
Instrument ID:	ICPMS1						En	d Date:		08	/21	/18					
Analytical Method	thod EPA 6020B			<u></u>	Analytical Batch: 642381												
							Intern	al S	Standar	ds	%RI Fo	r:				7	
CLIENT SAMPLE ID		SAMPLE	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
MB1840818		1840818	1138	103		114		113		119		108		117		109	
LCS1840819		1840819	1143	98		107		108		116		104		113	12	105	

ISTD 1: Bismuth (He) ISTD 2: Germanium (He) ISTD 3: Indium (He)

ISTD 4: Lutetium (He) ISTD 5: Rhodium (He) ISTD 6: Scandium (He) ISTD 7: Terbium (He)
XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Analytical Method	EPA 6020B		Analytical Batch:	642381	-
	GCAL	Γ	Internal Sta	ndards %RI For:	_
	SAMPLE				

CLIENT SAMPLE ID	ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11	Q	ISTD12	Q	ISTD13	Q	ISTD14	Q
MB1840818	1840818	1138	95		105		101		97		104		108		100	
LCS1840819	1840819	1143	93		104		100		97		100		107		99	

ISTD 8:	Bismuth (No Gas)	ISTD 11	Lutetium (No Gas)	ISTD 14	Terbium (No Gas)	
ISTD 9:	Germanium (No Gas) ⁻	ISTD 12	Rhodium (No Gas)			•
ISTD 10	Indium (No Gas)	ISTD 13	Scandium (No Gas)			

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813	~~~~~					Sta	rt Date:		08	/21	/18					
Instrument ID:	ICPMS1						End	d Date:		08	/21	/18					
Analytical Method	EPA 60208	3					Ana	alytical E	Bato	:h: <u>64</u>	238	31					
		GCAL						Intern	al S	Standar	ds	%RI Fo	r:	·			
CLIENT SAMPLE I	D	SAMPLE ID	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
WIL03IS00		21808181303	1151	100		102		101		108		103		104		101	

ISTD 1: Bismuth (He)	ISTD 4: Lutetium (He)	ISTD 7: Terbium (He)
ISTD 2: Germanium (He)	ISTD 5: Rhodium (He)	
ISTD 3: Indium (He)	ISTD 6: Scandium (He)	

FORM XV - IN

•

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813			_		S	Star	t Date:		08/	21/	18					_
Instrument ID:	ICPMS1					E	End	Date:		08/	21/	18			_		_
Analytical Method	EPA 6020B					A	na	lytical B	atch	n: <u>642</u>	238	1					_
				·				Intern	-al 6	Standar	de	V DI Eo					
CLIENT SAMPLE	ID	GCAL SAMPLE ID	TIME		0	ISTD9	0	ISTD10		ISTD11	us Q	ISTD12	20	ISTD13	0	ISTD14	
WIL03IS00		21808181303	1151	100		105	Ē	102		99		104		104		101	Ē

ISTD 8:Bismuth (No Gas)ISTD 11Lutetium (No Gas)ISTD 14Terbium (No Gas)ISTD 9:Germanium (No Gas)ISTD 12Rhodium (No Gas)ISTD 10Indium (No Gas)ISTD 10Indium (No Gas)ISTD 13Scandium (No Gas)

XIV ANALYSIS RUN LOG

Report No: 21808181	~				Ana	lytics	al Bat	ch:	8	2536										Star	t Dati	- -	8/23	/18							
Instrument ID: ICPMS1					Ana	lytics	al Met	:pod:	۳	A 60	20B									End	Date	- I 	8/23	18							
	GCAL SAMPI F										1 10					Ana	yte	Sym	sloc								Č.				00
CLIENT SAMPLE ID	9	ЪF	D/F	TIME	AI S	b As	Ba	Be	8	8	a 0	ŭ v	CL	е Ц	P9	S L	N B	ц	Mo	ī	¥	Se	i Ag	Na	ര്	F	Г и	> =	Ŗ	Ż	117
ITUNE	1150	*	4	0902	Ĥ	L			┝		┝	L	×		×	┝	┝	┝			┢	⊢	┝	L		F	┝	┝	×		_
IICALB	1300	*	1	1014	Ĥ				┢	\vdash	┝	-	×	Ĺ	×	┢─					\vdash	\vdash	┝	L		t	┢	┝	×		
IICAL2	1302	*	÷	1018	Ĥ					┝	┝		×		×	┝		-			F	\vdash		L		┢	┢	╞	×		_
IICAL4	1304	*	1	1023	Ĥ								×		×	\vdash	\vdash				┢─	┢	-	_			┝	┝	×		
licals	1305	*	ŕ	1027	Ê				╞─	-			×		×	-	-				F	┢	┝	L		┢	┢		×		
IICAL6	1306	*	1	1032	Ê				┢	⊢	⊢	-	×		×	┝	-				T	\vdash	┝			t	⊢	╞	×		
ICV	1600	*	1	1036	Ê	-				_			×		×	┝	\vdash				┢	┢	┝			┢		┝	×		
ICB	1700	*	1	1041	~					\vdash	┝		×		×	┝	┝					┢	-			┢	┢	╞	×		
LLCCV	1803	*	٢	1045	×					-	-		×		×	┝	-	┡	L		┢	\vdash	\vdash	-		T	┝─	-	×		
ICSA	2000	*	1	1049	^					⊢	┝		×		×	┝	┝				t	┢	┝			╞	┢	┞	×		
ICSAB	2100	*	1	1054	^					\vdash			×		×						-	-	-			┢		-	×		
LDR	2500	*	1	1058	×								×		×	-	-					\vdash	┡			F	┝	┝	×		
MB1841866	1841866	*	1	1129	×			_					×		×		-					\vdash	╞				┝	-	×		
LCS1841867	1841867	*	1	1134	×								×		×		-						╞				⊢	\vdash	×		
CCV	1800	*	1	1200	×								×		×						┝		-			┢	┝	╞	×		
CCB	1900	*	1	1205	×				-	-			×		×	┝	⊢				┢╌	\vdash				┢	\vdash	\vdash	×		
WIL01IS02	21808181302	*	10	1209	×								×		×	-	-	_				\vdash	┡				┝		×		
WIL01IS02MS	1842047	•	10	1214	×								×		×			_					┝				╞	┡	×		
W1L01IS02MSD	1842048	*	10	1218	×					\square			×		×						-	-	-			┢	┝		×		
WIL01IS02PDS	1842322	*	10	1222	×								×		×	_	_					\vdash	_			┢	┝		×		
WIL01IS02SD	1842323	¥	50	1227	×					-			×		×	-	┝				┢	┝	┡			\vdash	-		×		
WIL04IS03	21808181304	*	10	1231	×						_		×		×						┢	┝	L			┢	╞		×		
WIL04IS01	21808181305	*	10	1235	×						\vdash		×		×	\vdash					-		-			F	┝		×		
WIL04IS02	21808181306	*	10	1240	×								×		×						┢	┝				┢	┝	_	×		
CCV	1800	*	-	1328	×								×		×							-					┝		×		
CCB	1900	*	-	1332	Ě					-			×		×	-					┢	┝				┢	┝	╞	×		

FORM XIV - IN

GCAL Report#: 218081813

VIII ICP-MS TUNE

Report No:	218081813		·,	GCAL QC ID:	1150
Instrument ID:	ICPMS1			Lab File ID:	2180823A_MS1.b\QCTune\2180823A_MS1-QCTu
Analyst:	AWG			Analytical Batch:	642536
Analysis Date:	08/23/18	Time:	0902	Analytical Method:	EPA 6020B

ELEMENT - MASS	AVG MEASURED MASS (amu)	PEAK WIDTH AT 5% PEAK HEIGHT (amu)	%RSD
Be-9	9	.7775	.4292
Mg-24	23.9	.7434	.3034
Mg-25	24.95	.735	1.0936
Mg-26	25.9	.7422	1.4023
Co-59	58.95	.7335	.5488
In-115	115	.7328	.6735
Pb-206	206	.7673	1.1793
Pb-207	207	.7794	.977
Pb-208	208	.8013	.4759

FORM VIII - IN

1

INITIAL CALIBRATION VERIFICATION (ICV) STANDARD

Report No:	218081813			GCAL QC ID:	1600
Instrument ID:	ICPMS1			Lab File ID:	2180823A_MS1.b\017_ICV.d
Analyst:	LWZ			Analytical Batch:	642536
Analysis Date:	08/23/18	Time:	1036	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	50.0	49.7	99		ug/L
Copper	50.0	50.9	102		ug/L
Lead	50.0	48.8	98		ug/L
Zinc	1000	1000	100		ug/L

III INITIAL CALIBRATION BLANK

Report No:	218081813		Blank ID:	1700
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\018_ICB.d
Analyst:	LWZ		Analytical Batch:	642536
Analysis Date:	08/23/18 Ti	me: <u>1041</u>	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

FORM III - IN

р. –

• +

.

. .

Ш

LOW LEVEL CONTINUING CALIBRATION VERIFICATION (LLCCV) STANDARD

Report No:	218081813		GCAL QC ID:	1803	
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\019CCV1.d	
Analyst:	LWZ			Analytical Batch:	642536
Analysis Date:	08/23/18	Time:	1045	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	2.00	1.95	98		ug/L
Copper	1.00	0.960	96		ug/L
Lead	1.00	0.980	98		ug/L
Zinc	20.0	20.4	102		ug/L

IV ICPMS INTERFERENCE CHECKS

Report No:	218081813	ICSA \ AB ID:	2000 \ 2100
Instrument ID:	ICPMS1	Analytical Batch:	642536
Analyst:	LWZ	Analytical Method:	EPA 6020B
Lab File ID ICSA1:	2180823A_MS1.b\020ICSA.d	Lab File ID ICSAB1:	2180823A_MS1.b\021ICSB.d
Lab File ID ICSA2:		Lab File ID ICSAB2:	

Concentration Units: ug/L

Analyzed (A/AB):		08/23/18 1049	08/23/18 1054					
ANALYTE	TRUE A	TRUE AB	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R
Aluminum	1000	1000	1010	999	100	······		
Antimony	0	0	-0.0020	-0.012				
Arsenic	0	10.0	0.0040	10.0	100			
Barium	0	0	0.025	0.025			· · · · · · · · · · · · · · · · · · ·	
Beryllium	0	0	-0.0010	-0.0050				
Boron	0	20.0	0.42	19.5	98			
Cadmium	0	10.0	0.020	10.1	101			
Calcium	3000	3000	2870	2960	99			
Chromium	0	20.0	0.0	19.9	100			
Cobalt	0	20.0	0.0040	20.2	101			
Copper	0	20.0	-0.098	20.6	103			
Iron	2500	2500	2490	2480	99		İ	
Lead	0	0	0.0010	-0.010				
Lithium	0	20.0	-0.026	22.4	112	••		
Magnesium	1000	1000	997	991	99			
Manganese	0	20.0	0.028	20.2	101	· · · · · ·		
Molybdenum	20.0	20.0	19.5	19.3	96			
Nickel	0	20.0	-0.0080	20.5	102			
Potassium	1000	1000	1010	998	100			
Selenium	0	10.0	0.021	10.4	104			
Silicon	0	1000	-1.4	1090	109			
Silver	0	5.00	0.0070	5.16	103			
Sodium	2500	2500	2600	2520	101			
Strontium	0	10.0	0.10	9.92	99			
Thallium	0	0	-0.026	-0.034				
Tin	0	10.0	-0.038	7.41	74			
Titanium	20.0	20.0	20.0	20.8	104			
Vanadium	0	20.0	-0.011	17.1	86			
Zinc	0	20.0	-0.13	19.8	99			
Zirconium	0	20.0	0.021	19.1	96			

П

LINEAR DYNAMIC RANGE (LDR) STANDARD

Report No:	218081813		GCAL QC ID:	2500	
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\022_QC1.d	
Analyst:	LWZ		Analytical Batch:	642536	
Analysis Date:	08/23/18	Time:	1058	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	1000	909	91		ug/L
Соррег	1000	923	92		ug/L
Lead	1000	952	95		ug/L
Zinc	20000	19600	98		ug/L

Ш

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081813		GCAL QC ID:	1800	¥2000
Instrument ID:	ICPMS1	ä	Lab File ID:	2180823A_MS1.b\036_C	CV.d
Analyst:	LWZ	27	Analytical Batch:	642536	
Analysis Date:	08/23/18	Time: 1200	Analytical Method	d: EPA 6020B	

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	19.5	98		ug/L
Copper	10.0	9.97	100		ug/L
Lead	10.0	9.44	94		ug/L
Zinc	200	198	99		₂ ug/L

III CONTINUING CALIBRATION BLANK

Report No:	218081813		Blank ID:	1900
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\037_CCB.d
Analyst:	LWZ		Analytical Batch:	642536
Analysis Date:	08/23/18 Time:	1205	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

П

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081813			GCAL QC ID:	1800
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\056_CCV.d	
Analyst:	LWZ			Analytical Batch:	642536
Analysis Date:	08/23/18	Time:	1328	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	19.8	99		ug/L
Copper	10.0	10.1	101		ug/L
Lead	10.0	9.43	94		ug/L
Zinc	200	199	100		ug/L

III CONTINUING CALIBRATION BLANK

Report No:	218081813			Blank ID:	1900
Instrument ID:	ICPMS1			Lab File ID:	2180823A_MS1.b\057_CCB.d
Analyst:	LWZ		,	Analytical Batch:	642536
Analysis Date:	08/23/18	Time:	1332	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0 💡	20.0

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813	Start Date:	08/23/18
Instrument ID:	ICPMS1	End Date:	08/23/18
Analytical Method	EPA 6020B	Analytical Batch:	642536

	GCAI						Intern	ai S	Standar	ds	%Ri Fo	r:				
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
MB1841866	1841866	1129	102		108	<u> </u>	109		112		105		110	Γ	107	
LCS1841867	1841867	1134	99		105		106		107	-	101	\square	109	-	105	Н
WIL01IS02	21808181302	1209	90		97		93		96		91		102	-	97	Н
WIL01IS02MS	1842047	1214	84		95		92		95		88		100		95	
WIL01IS02MSD	1842048	1218	87		96	-	92		95		88	-	101		95	
WIL01IS02PDS	1842322	1222	86		97		92		95		89		101		96	
WIL01IS02SD	1842323	1227	100		101		100		100		99		101		101	
WIL04IS03	21808181304	1231	93		99		95		97		91		101		98	
WIL04IS01	21808181305	1235	90		98		95		98		92		101		98	П
WIL04IS02	21808181306	1240	93		98		95		98		94		102		98	П

ISTD 1: Bismuth (He) ISTD 2: Germanium (He) ISTD 3: Indium (He) ISTD 4: Lutetium (He) ISTD 5: Rhodium (He) ISTD 6: Scandium (He) ISTD 7: Terbium (He)

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813	Start Date:	08/23/18	
Instrument ID:	ICPMS1	End Date:	08/23/18	
Analytical Method	EPA 6020B	Analytical Batch:	642536	
			5	

	GCAL						Interna	al S	Standard	s %RI Fo)г:				
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11 G		2 Q	ISTD13	Q	ISTD14	ı Q
MB1841866	1841866	1129	98	<u> </u>	103		103		101	102	Г	106		102	Π
LCS1841867	1841867	1134	96		103		101		102	101		105		103	Н
WIL01IS02	21808181302	1209	96		105		101		103	100		109	-	104	Н
WIL01IS02MS	1842047	1214	95		103		100		102	98	T	108		102	Н
WIL01IS02MSD	1842048	1218	95		102		97		100	96	Г	107		101	Н
WIL01IS02PDS	1842322	1222	95		104		99		101	98	T	108	-	102	Н
WIL01IS02SD	1842323	1227	101		103		103		103	103	T	104		104	Н
WIL04IS03	21808181304	1231	97		104		101		102	100	F	108		104	Н
WIL04IS01	21808181305	1235	97		105		101		103	100	T	108		104	Н
WIL04IS02	21808181306	1240	98		105		102		104	102	T	108		105	П

ISTD 8: Bismuth (No Gas) ISTD 11 Lutetium (No Gas) ISTD 14 Terbium (No Gas) ISTD 9: Germanium (No Gas) ISTD 12 Rhodium (No Gas) ISTD 10 Indium (No Gas) ISTD 13 Scandium (No Gas)

FORM XV - IN

XIV ANALYSIS RUN LOG

Report No:	218081813					Ana	lytica	il Bati	븏	64:	2829									0)	start I	Date:	8	/28/1							I
Instrument ID:	ICPMS2	- 1				Ana	lytica	l Met	:poq:	읍	A 60	20B								ш	D pu	ate:	8	/28/1							I
		GCAL SAMPI F															VIaly	te S	dm/	S							6				
CLIENT SAMPLE	Q	Q	Ч	D/F	TIME	A S	b As	Ba	Be	8	0	0 Ū	ပိ	S	Fe P	b Li	Mg	Mn	Hg	No N		ŭ Y	ŝ	Ъ	Na	່ຮ	⊑ S		>	ų	й
ITUNE		1150	*	1	0931	Ĥ	-			\vdash	\vdash	\vdash		×	Ĥ	F				F	┝	┝			┢	-	\vdash	\vdash		×	Γ
IICALB		1300	*	-	1024	Ê					┝			×	Ĥ	F				┢	\vdash	-			\vdash	┢	┝	-		×	Γ
IICAL2		1302	*	-	1028	ŕ	~			┢	-	-		×	Ĥ			Ĺ		F	\vdash	╞				┢	┢	┡	L	×	Γ
IICAL4		1304	*	٢	1031	Ê					\vdash	_		×	Ê					F	┝	-			\vdash	\vdash	\vdash			×	Γ
IICAL5		1305	*		1035	Ĥ								×	Ê						┝	╞				\vdash	\vdash			×	
IICAL6		1306	*	٢	1039	~				⊢	-	1		×	Ê	Ļ						-			┢	┢	┝	┡	L	×	
ICV		1600	*	4	1042	^					-			×	Ĥ	Ļ					┝	┝			\vdash	\vdash	┝			×	Γ
ICB		1700	*	٢	1050	~					-	_		×	Ĥ		_				┝				\vdash	\vdash	\vdash			×	Γ
LLCCV		1803	*	٢	1100	<u>^</u>					\vdash			×	Ê					┢╴	-	┝			┢	╞	┝			×	
ICSA		2000	*	1	1104	\sim					-			×	Ê	Ļ				-	┝				┢	┝	╞	┝		×	
ICSAB		2100	*	+	1107	ŕ			Η	Η	\vdash			×	Ĥ					┢	┝				⊢		-			×	Γ
LDR		2500	*		1111	~				-		_		×												-				×	
ccv		1800	*	۲	1240	^			Η	Η	Η			×	Ê	Ļ				\vdash	\vdash				┢		\vdash			×	
CCB		1900	*	1	1243	~				\vdash			1	×	Ê	Ļ				-	\vdash				┢	┝	╞			×	
MB1842310		1842310	*	1	1247	×					┝	_		×	Ĥ	Ļ				-	┝	-			┝	┝	┝	L		×	
LCS1842311		1842311	*	1	1250					-	<u> </u>			×	ŕ	L				F	\vdash	\vdash			┢	┝	-	_		×	
WIL03IS01		21808181301	*	10	1305	×								×	ŕ					┢	┝	╞			┢	\vdash	┝			×	Γ
WIL03IS02		21808181308	*	10	1308	×				-				×	É											\vdash				×	Γ
CCV		1800	*	1	1337	Ě				_				×	É					-		┝				┝	┝			×	
CCB		1900	*	1	1340	×								×	É	Ļ					\vdash				┢	\vdash		-		×	
WILO3IS03		21808181307	*	10	1355	×			Η		-			×	ŕ							┝					┝			×	
ccv		1800	*	1	1358	×				\vdash				×	É					-		┝			┢		╞			×	
CCB		1900	*	1	1402	×				H				×	ŕ						┝	┡			┢─	┝				×	
ICSA		2000	*	1	1800	×			Η	\vdash	H	Ц		×	<u>~</u>											┝	-			×	
ICSAB		2100	*	1	1804	×								×	×					-	_	-								×	

FORM XIV - IN

GCAL Report#: 218081813

Report No: 218081814					Ani	alytic	al Bat	ch:	64	2829					1				Star	t Dat		08/28	3/18						1
Instrument ID; ICPMS2					Ani	alytic	al Met	:poq:	<u>۳</u> [A 60	20B								End	Date		08/28	3/18						1
	GCAL		•												ŀ	ŀ													
	SAMPLE			_0											₹	alyt	m/S e	slodr											٦
CLIENT SAMPLE ID	Q	ЪF	D/F	TIME	S, IA	sb A	s Ba	Be	В	о R	с с	ပိ	Cu L	e E	С	ВЙ	ЧЧ	lg Mo	ïŻ	¥	Se	SiA	ŝ N	ູ່ດັ	F	Su	>	Ч,	й
ITUNE	1150	*	۲	0931	ŀ	×	L		⊢	- 22	L		×	ř			H	L			-	┝	╞			⊢	┝	×	
licalb	1300	*	+	1024	È	×			┢				×	ř			\vdash	-		L	┢	┝					\vdash	×	
lical2	1302	*	-	1028	ŀ	×	Ĺ		\vdash	\vdash	\vdash		×	ľ				┝		L	\vdash	╞	\vdash			┢	\vdash	×	
IICAL4	1304	*	+	1031	ŀ	×	Ĺ			\vdash			×	×			\vdash	-				-	-				\vdash	×	
licals	1305	*	+	1035	İ	×							×	×							┢	┝				\vdash	╞	×	
licale	1306	*	٢	1039	ŀ	×							×	×			\vdash				\vdash	-	\vdash			┢		×	
ICV	1600	*	t	1042	H	×				\vdash			×	×			\vdash					\vdash	-					×	
ICB	1700	*	-	1050	ŀ	×				-	-		×	×							\vdash	┝					-	×	
LLCCV	1803	*	-	1100	ŀ	×							×	×			-				┢	┝	-			┢	\vdash	×	
ICSA	2000	*	t.	1104	ŀ	×				-			×	×			-	-			⊢	\vdash				\vdash	\vdash	×	
ICSAB	2100	*	1	1107	H	×							×	×				_			\vdash	-	\vdash				-	×	1
LDR	2500	*	1	1111		×					1		×	×				_				-	-					×	
CCV	1800	*	1	1240	H	×			H				×	×								\vdash						×	
CCB	1900	*	1	1243		×			Η	Η	Ц		×	×				_			-	-						×	
MB1842310	1842310	*	1	1247	H	×							×	×			Η	\square				\vdash					_	×	
LCS1842311	1842311	*	1	1250	÷	×							×	×				-			-	-	_					×	
WIL02IS01	21808181401	*	10	1312	H	×			-				×	×							\vdash	┝						×	
WILO2IS01 MS	21808181402	*	10	1315	H	×			-	_			×	×														×	
WILO2IS01 MSD	21808181403	*	10	1319		×					_		×	×						F	H	-					-	×	
WIL02IS01PDS	1843727	*	10	1322		×							×	×				_				H					-	×	
WIL02IS01SD	1843728	*	50	1326		×							×	×													-	×	
WIL021S02	21808181404	*	10	1329		×							×	×				_		F	-	H	_				-	×	
WILD1IS03	21808181405	*	10	1333	—	×							×	×							-	-					-	×	
CCV	1800	*	1	1337		×							×	×	1		_				H	-						×	
CCB	1900	*	1	1340		×							×	×			H				H	Η						×	
WIL01iS01	21808181406	*	10	1344		×							×	×													-	×	
WIL02IS03	21808181407	•	10	1347		×					_		×	×							\square	Н						×	
CCV	1800	*	-	1358		×							×	×							Η							×	
CCB	1900	*	Ţ	1402	_				\neg	_			×	×														×	

FORM XIV - IN

GCAL Report#: 218081814

XIV ANALYSIS RUN LOG

VIII ICP-MS TUNE

Report No:	218081813			GCAL QC ID:	1150
Instrument ID:	ICPMS2			Lab File ID:	2180828A_MS2.b\QCTune\2180828A_MS2-QCTu
Analyst:	AWG			Analytical Batch:	642829
Analysis Date:	08/28/18	Time:	0932	Analytical Method:	EPA 6020B

ELEMENT - MASS	AVG MEASURED MASS (amu)	PEAK WIDTH AT 5% PEAK HEIGHT (amu)	%RSD
Be-9	9	.785	.4858
Mg-24	24	.7864	.6731
Mg-25	25	.7931	1.2316
Mg-26	26	.7857	.6112
Co-59	59	.7733	.4029
In-115	115.05	.7179	.2559
Pb-206	206.05	.7639	1.0553
Pb-207	207.05	.744	.4899
Pb-208	208.05	.7747	.8738

7

11

INITIAL CALIBRATION VERIFICATION (ICV) STANDARD

Report No:	218081813			GCAL QC ID:	1600
Instrument ID:	ICPMS2			Lab File ID:	2180828B_MS2.b\015_ICV_2180828A_MS2.D
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	08/28/18	Time:	1042	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	50.0	50.9	102		ug/L
Copper	50.0	51.6	103		ug/L
Lead	50.0	49.6	99		ug/L
Zinc	1000	1010	101		ug/L

III INITIAL CALIBRATION BLANK

Report No:	218081813	Blank ID:	1700		
Instrument ID:	ICPMS2	Lab File ID:	2180828B_MS2.b\017_ICB_2180828A_MS2.D		
Analyst:	LWZ	Analytical Batch:	642829		
Analysis Date:	08/28/18 Time: <u>1050</u>	Analytical Method:	EPA 6020B		

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

II LOW LEVEL CONTINUING CALIBRATION VERIFICATION (LLCCV) STANDARD

Report No:	218081813		GCAL QC ID:	1803	
Instrument ID:	ICPMS2		Lab File ID:	2180828B_MS2.b\1811CCV1_2180828A_MS2.D	
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	08/28/18	Time:	1100	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	2.00	1.91	95		ug/L
Copper	1.00	1.08	108		ug/L
Lead	1.00	0.980	98		ug/L
Zinc	20.0	19.1	95		ug/L

IV ICPMS INTERFERENCE CHECKS

Report No:	218081813	ICSA \ AB ID:	2000 \ 2100
Instrument ID:	ICPMS2	Analytical Batch:	642829
Analyst:	LWZ	Analytical Method:	EPA 6020B
Lab File ID ICSA1:	2180828B_MS2.b\1812ICSA_2180828A_MS2.D	Lab File ID ICSAB1:	2180828B_MS2.b\1813ICSB_2180828A_MS2.D
Lab File ID ICSA2:	2180828C_MS2.b\070ICSA.d	Lab File ID ICSAB2:	2180828C_MS2.b\0711CSB.d

Concentration Units: ug/L

Analyzed (A/AB):		08/28/18 1104	08/28/18 1107		08/28/18 1800	08/28/18 1804		
ANALYTE	TRUE A	TRUE AB	ICSA1	ICSAB1	%R	ICSA2	ICSAB2	%R
Aluminum	1000	1000	1020	1030	103	988	988	99
Antimony	0	0	-0.059	-0.057		-0.062	-0.069	
Arsenic	0	10.0	-0.0030	10.3	103	-0.018	10.1	101
Barium	0	0	-0.0040	0.014		0.0060	0.021	
Beryllium	0	0	-0.0070	-0.0060		-0.0080	-0.010	
Boron	0	20.0	-0.11	20.1	100	-0.71	18.5	92
Cadmium	0	10.0	0.014	9.83	98	0.0080	9.90	99
Calcium	3000	3000	2950	3030	101	2980	3010	100
Chromium	0	20.0	0.0010	20.4	102	-0.11	19.4	97
Cobalt	0	20.0	0.0070	20.8	104	0.0050	20.2	101
Copper	0	20.0	0.027	21.7	108	0.098	21.1	106
Iron	2500	2500	2550	2550	102	2430	2450	98
Lead	0	0	-0.0050	-0.0030		-0.0050	-0.0070	
Lithium	0	20.0	0.11	23.9	120	-0.24	22.7	114
Magnesium	1000	1000	1020	1040	104	981	980	98
Manganese	0	20.0	-0.010	20.4	102	-0.028	19.7	98
Molybdenum	20.0	20.0	19.4	19.1	96	19.7	19.5	98
Nickel	0	20.0	-0.0020	21.0	105	-0.030	20.3	102
Potassium	1000	1000	991	1020	102	992	985	98
Selenium	0	10.0	-0.020	9.83	98	-0.0070	9.48	95
Silicon	0	1000	-1200	-80	-8	-5500	-4500	-454
Silver	0	5.00	0.0040	5.00	100	0.0030	5.06	101
Sodium	2500	2500	2520	2590	104	2450	2470	99
Strontium	0	10.0	0.10	10.3	103	0.11	10.4	104
Thallium	0	0	-0.023	-0.025		-0.043	-0.041	
Tin	0	10.0	-0.028	9.84	98	0.0060	10.1	101
Titanium	20.0	20.0	19.4	20.3	102	19.7	20.0	100
Vanadium	0	20.0	-0.020	17.5	88	-0.026	16.9	84
Zinc	0	20.0	-0.92	19.5	98	-1.0	18.8	94
Zirconium	0	20.0	0.023	19.4	97	0.0060	19.3	96

II LINEAR DYNAMIC RANGE (LDR) STANDARD

Report No:	218081813		GCAL QC ID:	2500	
Instrument ID:	ICPMS2		Lab File ID:	2180828B_MS2.b\1814_QC1_2180828A_MS2.D	
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	08/28/18	Time:	1111	Analytical Method:	EPA 6020B

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	1000	955	96		ug/L
Copper	1000	950	95		ug/L
Lead	1000	972	97		ug/L
Zinc	20000	18900	94		ug/L

П

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081813			GCAL QC ID:	1800
Instrument ID:	ICPMS2		Lab File ID:	2180828B_MS2.b\1834_CCV_2180828A_MS2.D	
Analyst:	LWZ		Analytical Batch:	642829	
Analysis Date:	08/28/18 Time: 1240		Analytical Method:	EPA 6020B	

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	20.1	100		ug/L
Copper	10.0	10.7	107		ug/L
Lead	10.0	9.83	98		ug/L
Zinc	200	205	102		ug/L

III CONTINUING CALIBRATION BLANK

Report No:	218081813		Blank ID:	1900			
Instrument ID:	ICPMS2		Lab File ID:	2180828B_MS2.b\1835_CCB_2180828A_MS2.D			
Analyst:	LWZ		Analytical Batch:	642829			
Analysis Date:	08/28/18 Time: <u>1243</u>		Analytical Method:	EPA 6020B			

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

FORM III - IN

Ш

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No:	218081813			GCAL QC ID:	1800
Instrument ID:	ICPMS2			Lab File ID:	2180828B_MS2.b\1850_CCV_2180828A_MS2.D
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	08/28/18 Time: 1337		Analytical Method:	EPA 6020B	

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	19.7	99		ug/L
Copper	10.0	10.6	106		ug/L
Lead	10.0	9.67	97		ug/L
Zinc	200	203	102		ug/L

III CONTINUING CALIBRATION BLANK

Report No:	.eport No: 218081813		Blank ID:	1900					
Instrument ID:	ment ID: ICPMS2			Lab File ID:	2180828B_MS2.b\1851_CCB_2180828A_MS2.D				
Analyst:	LWZ			Analytical Batch:	642829				
Analysis Date:	08/28/18	Time: <u>1340</u>		Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	Ų	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

Ш

CONTINUING CALIBRATION VERIFICATION (CCV) STANDARD

Report No: 218081813		218081813 GCAL QC ID:		GCAL QC ID:	1800
Instrument ID:	Instrument ID: ICPMS2		Lab File ID:	2180828C_MS2.b\002_CCV.d	
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	Date: 08/28/18 Time: 1358		Analytical Method:	EPA 6020B	

ANALYTE	TRUE	FOUND	%RECOVERY	Q	UNITS
Antimony	20.0	20.2	101		ug/L
Copper	10.0	10.5	105		ug/L
Lead	10.0	9.64	96		ug/L
Zinc	200	203	102		ug/L

III CONTINUING CALIBRATION BLANK

Report No: 218081813		Blank ID:	1900					
Instrument ID:	strument ID: ICPMS2		2180828C_MS2.b\003_CCB.d					
Analyst:	LWZ	Analytical Batch:	642829					
Analysis Date:	08/28/18 Time: 14	402 Analytical Method:	EPA 6020B					

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813	Start Date:	08/28/18
Instrument ID:	ICPMS2	End Date:	08/28/18
Analytical Method	EPA 6020B	Analytical Batch:	642829

	GCAL						Intern	al S	Standar	ds	%RI Fo	r:				
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD1 (Q IS	STD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
MB1842310	1842310	1247	126	Т	115		121		122		114		113		119	
LCS1842311	1842311	1250	130		119		124		128		115		115		125	
WIL03IS01	21808181301	1305	87		100		94		77		93		101		83	
WIL03IS02	21808181308	1308	91		101		95		79		96		100		85	
WIL03IS03	21808181307	1355	94		102		99		83		99		101		90	

ISTD 1: Bismuth (He)ISTD 4: Lutetium (He)ISTD 7: Terbium (He)ISTD 2: Germanium (He)ISTD 5: Rhodium (He)ISTD 3: Indium (He)ISTD 6: Scandium (He)

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081813	Start Date:	08/28/18
Instrument ID:	ICPMS2	End Date:	08/28/18
Analytical Method	EPA 6020B	Analytical Batch:	642829
	Г	Internal Sta	ndarde % Pl For:

	GCAL		Internal Standards %RI For:												
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11	Q ISTL	012	Q ISTD1	3 Q	ISTD14	Q
MB1842310	1842310	1247	110		103		106		108	10	4	98	Г	107	
LCS1842311	1842311	1250	113		104		108		112	10	5	99	\square	110	\square
WIL03IS01	21808181301	1305	87		95		89		84	89	5	97		86	
WIL03IS02	21808181308	1308	90		96		92		86	91		97	\square	88	
WIL03IS03	21808181307	1355	92		98		94		92	94		98	1	94	

ISTD 8:	Bismuth (No Gas)	ISTD 11	Lutetium (No Gas) ISTD 14 Terbium (No Gas)	
ISTD 9:	Germanium (No Gas)	ISTD 12	Rhodium (No Gas)	
ISTD 10	Indium (No Gas)	ISTD 13	Scandium (No Gas)	

XV (He) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081814	Start Date:	08/28/18
Instrument ID:	ICPMS2	End Date:	08/28/18
Analytical Method	EPA 6020B	Analytical Batch:	642829

	GCAL		Internal Standards %RI For:													
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD1	Q	ISTD2	Q	ISTD3	Q	ISTD4	Q	ISTD5	Q	ISTD6	Q	ISTD7	Q
MB1842310	1842310	1247	126		115		121		122		114		113		119	
LCS1842311	1842311	1250	130		119		124		128		115		115		125	
WIL02IS01	21808181401	1312	88		101		95		78		95		102		84	
WIL02IS01 MS	21808181402	1315	85		100		94		75		95		102		79	
WIL02IS01 MSD	21808181403	1319	87		101		94		76		94		102		81	
WIL02IS01PDS	1843727	1322	90		101		97		79		95		102		84	
WIL02IS01SD	1843728	1326	92		99		97	Γ	79		97		96		85	
WIL02IS02	21808181404	1329	92		101		96		80		96		100		88	
WIL01IS03	21808181405	1333	89		99		94		77		96		99		83	
WIL01IS01	21808181406	1344	89		101		97		78		97		100		85	
WIL021S03	21808181407	1347	94		102		98		83		98	-	102		90	

ISTD 1: Bismuth (He) ISTD 4: Lutetium (He) ISTD 7: Terbium (He) ISTD 2: Germanium (He) ISTD 5: Rhodium (He) ISTD 3: Indium (He) ISTD 6: Scandium (He)

XV (No Gas) ICP-MS INTERNAL STANDARDS RELATIVE INTENSITY SUMMARY

Report No:	218081814	Start Date:	08/28/18	
Instrument ID:	ICPMS2	End Date:	08/28/18	
Analytical Method	EPA 6020B	Analytical Batch:	642829	

	GCAI		Internal Standards %RI For:														
CLIENT SAMPLE ID	SAMPLE ID	TIME	ISTD8	Q	ISTD9	Q	ISTD10	Q	ISTD11 C		2 Q	ISTD13	TD13 Q ISTD14				
MB1842310	1842310	1247	110		103		106		108	104	Г	98	-	107			
LCS1842311	1842311	1250	113		104		108		112	105	\top	99		110			
WIL02IS01	21808181401	1312	88		96		92		87	91	\top	99		89			
WIL02IS01 MS	21808181402	1315	85		93		89		82	89	\neg	96		84			
WIL02IS01 MSD	21808181403	1319	89		96		91		85	91	┢	98		87			
WIL02IS01PDS	1843727	1322	90		96		93		88	91	┢	98		89			
WIL02IS01SD	1843728	1326	92		96		94		89	94	\square	95		90			
WIL02IS02	21808181404	1329	92		96		93		89	93		98		91			
WIL011S03	21808181405	1333	89		97		94		88	92		97		90			
WIL01IS01	21808181406	1344	89		96		93		87	92	\top	98		89			
WIL02IS03	21808181407	1347	90		98		95		90	94	1	99		92			

ISTD 8: Bismuth (No Gas) ISTD 11 Lutetium (No Gas) ISTD 14 Terbium (No Gas) ISTD 9: Germanium (No Gas) ISTD 12 Rhodium (No Gas) ISTD 10 Indium (No Gas) ISTD 13 Scandium (No Gas)

FORM XV-IN

XIII PREPARATION LOG

Report No:	218081812		
Prep Method:	EPA 3050B	Prep Batch:	642222

CLIENT SAMPLE ID	GCAL SAMPLE ID	PREP DATE	WEIGHT	UNITS	ITS VOLUME	UNITS
LCS1840819	1840819	08/20/18	1.25	g	50	mL
MB1840818	1840818	08/20/18	1.25	g	50	mL
WIL02DA01A	21808181209	08/20/18	1.45	g	50	mL
WIL02DA01B	21808181210	08/20/18	1.33	g	50	mL
WIL02DA02A	21808181206	08/20/18	1.25	g	50	mL
WIL02DA02A MS	21808181207	08/20/18	1.25	g	50	mL
WIL02DA02A MSD	21808181208	08/20/18	1.25	g	50	mL

FORM XIII - IN

III METHOD BLANK

Report No:	218081812		·	Blank ID:	MB1840818				
Instrument ID:	ICPMS1			Lab File ID:	2180821A_MS1.b\020SMPL.d				
Analyst:	LWZ			Analytical Batch:	642381				
Analysis Date:	08/21/18	Time:	1138	Analytical Method:	EPA 6020B				

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	21.7	ug/kg	J	20.0	40.0	80.0
Copper	13.0	ug/kg	J	10.0	20.0	40.0
Lead	20.0	ug/kg	U	10.0	20.0	40.0
Zinc	518	ug/kg	J	200	400	800
VII LABORATORY CONTROL SAMPLE

Report No:	218081812	GCAL ID:	1840819 (LCS)		
Matrix:	Solid	Instrument ID:	ICPMS1		
Analyst:	LWZ	Lab File ID:	2180821A_MS1.b\021SMPL.d		
Prep Date:	08/20/18 Time: 1100	Analysis Date:	08/21/18 Time: 1143		
Prep Batch:	642222	Analytical Batch:	642381		
Prep Method:	3050B	Analytical Method:	EPA 6020B		

ANALYTE	UNITS	TRUE	FOUND	% R	Q	LCL	UCL
Antimony	ug/kg	4000	3800	95		72	124
Copper	ug/kg	2000	1990	100		84	119
Lead	ug/kg	2000	1970	99		84	118
Zinc	ug/kg	40000	34700	87		82	119

FORM VII - IN

V1 MS/MSD RECOVERY

Report No:	218081812	Parent Sample ID:	WIL02DA02A
Prep Method:	3050B	Parent GCAL ID:	21808181206
Prep Date:	08/20/18 Time: 1100	Prep Batch:	642222
Analytical Method:	EPA 6020B	Analytical Batch:	642309

GCAL QC ID:	21808181207 MS	Instrument ID:	ICPMS2
Analyst:	LWZ	Lab File ID:	2180820B_MS2.b\121278SMPL.d
Analysis Date:	08/20/18 1806	Dilution:	10

ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC	LIMIT	s
Antimony	ug/kg	5740	0	373	7	*	72	-	124
Copper	ug/kg	2870	35400	36500	38	*	84	-	119
Lead	ug/kg	2870	18900	20800	67	*	84	-	118
Zinc	ug/kg	57400	101000	157000	98		82	-	119

GCAL QC ID: Analyst: Analysis Date:	21808181208 MSD LWZ 08/20/18 1810			Instrument ID: Lab File ID: Dilution:	ICPMS 21808 10	32 20B_MS2.t)\12127	79SMPL.d	
ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	#	% RPD	#	QC L	IMITS RPD
Antimony	ug/kg	5740	314	5	*	17		72 - 124	0 - 20
Copper	ug/kg	2870	42100	232		14		84 - 119	0 - 20
Lead	ug/kg	2870	23000	141		10		84 - 118	0 - 20
Zinc	ug/kg	57400	170000	121	*	8		82 - 119	0 - 20

 RPD :
 0
 .out of
 4
 outside limits

 Spike Recovery:
 7
 out of
 8
 outside limits

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

FORM V (PART 1) - IN

V2 POST DIGEST SPIKE SAMPLE RECOVERY

Report No:	218081812	GCAL PDS ID:	1841231
Matrix:	Solid	Parent Sample ID:	WIL02DA02A (21808181206)
Analyst:	LWZ	Instrument ID:	ICPMS2
Analysis Date:	08/20/18 Time: 1813	Lab File ID:	2180820B_MS2.b\121280SMPL.d
Analytical Method:	EPA 6020B	Analytical Batch:	642309

ANALYTE	UNITS	SPIKED SAMPLE RESULT	с	SAMPLE RESULT	с	SPIKE ADDED	% R	Q	LCL	UCL
Antimony	ug/kg	54000		0	U	57400	94		80	120
Copper	ug/kg	64600		35400		28700	102		80	120
Lead	ug/kg	48100		18900		28700	102		80	120
Zinc	ug/kg	652000		101000		574000	96		80	120

FORM V (PART 2) - IN

IX SERIAL DILUTIONS

Report No:	218081812		GCAL SD ID:	1841232
Matrix:	Solid		Parent Sample ID:	WIL02DA02A (21808181206)
Analyst:	LWZ		Instrument ID:	ICPMS2
Analysis Date:	08/20/18 Ti	ime: 1817	Lab File ID:	2180820B_MS2.b\121281SMPL.d
Analytical Method:	EPA 6020B		Analytical Batch:	642309

ANALYTE	UNITS	PARENT SAMPLE RESULT	С	SERIAL DILUTION RESULT	с	% DIFF	Q	LCL	UCL
Antimony	ug/kg	0	U	0	U				
Copper	ug/kg	35400		38200		7.9		0	10
Lead	ug/kg	18900		19600		3.7	1	0	10
Zinc	ug/kg	101000		112000		10.9	E	0	10

3010A Metals Water Preparation

AN TE	ALYST/ CH	Th.	START DATE/TIME	6-7019	END DATE/TIME	2155	BATCH	642277
#	CLIENT	TYPE	CLIENT ID	GCAL ID				
1	QC	MB	MB 1841052	1841052	956			GCAL - 8 - 250uL
2	QC	LCS	LCS 1841053	1841053		- 90-		771018
3	4989	SAMP	#14	21808166103	Bul			Sb,Ag,Se SPIKE - 250uL
4	0042	SAMP	Nickel Catalyst #2	21808173601	Shil			ZIL 1052
5	QC	MS	Nickel Catalyst #2MS	1841056	1100			LI,B,Zr SPIKE - 250uL
6	QC	MSD	Nickel Catalyst #2MSD	1841057				21/10/0-2
7	4629	SAMP	PMW-3A	21808180601	BANC			Si ŠPIKE - 250uL
8	4629	SAMP	MW-65	21808180602	Mun			7171,775
9	4838	SAMP	WIL03IS00	21808181303				1:1 HNO3
10	0176	SAMP	SARA Separator Eff	21808201101	1			771, 1746
11	0176	SAMP	SARA ACLA Sump	21808201102				1:1 HCL
12	0176	SAMP	U31PS201G	21808201401				771, 7R-1
13								
14								
15								
16								
17								
18								
19				>				
20				·····				
21								
22					21			
23								
24								
20								
27								Digestion Vessel Let#
28								OK KIK
29								100200
30								
EO	UIPMENT		IONS	L	<u> </u>			
DIG								
NO	TES							

TCLPs are reduced in volume due to sample matrix. Matrix-Water. 6020_W_EX

XIII PREPARATION LOG

Report No:	218081813		
Prep Method:	EPA 3010A	Prep Batch:	642277

CLIENT SAMPLE ID	GCAL SAMPLE ID	PREP DATE	WEIGHT	UNITS	VOLUME	UNITS
LCS1841053	1841053	08/20/18			50	mL
MB1841052	1841052	08/20/18			50	mL
Nickel CatalystMS	1841056	08/20/18			50	mL
Nickel CatalystMSD	1841057	08/20/18			50	mL
WIL03IS00	21808181303	08/20/18			50	mL

III METHOD BLANK

Report No:	218081813		Blank ID:	MB1841052	
Instrument ID:	ICPMS2		Lab File ID:	2180820B_MS2.b\121284SMPL.d	
Analyst:	LWZ			Analytical Batch:	642309
Analysis Date:	08/20/18 Time: 1827		Analytical Method:	EPA 6020B	

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	1.00	ug/L	U	0.50	1.00	2.00
Copper	0.50	ug/L	U	0.25	0.50	1.00
Lead	0.50	ug/L	U	0.25	0.50	1.00
Zinc	10.0	ug/L	U	5.00	10.0	20.0

VII LABORATORY CONTROL SAMPLE

Report No:	218081813	GCAL ID:	1841053 (LCS)		
Matrix:	Water	Instrument ID:	ICPMS2		
Analyst:	LWZ	Lab File ID:	2180820B_MS2.b\121285SMPL.d		
Prep Date:	08/20/18 Time: 1130	Analysis Date:	08/20/18 Time: 1831		
Prep Batch:	642277	Analytical Batch:	642309		
Prep Method:	3010A	Analytical Method:	EPA 6020B		

ANALYTE	UNITS	TRUE	FOUND	% R	Q	LCL	UCL
Antimony	ug/L	100	106	106		85	117
Copper	ug/L	50.0	56.2	112		85	118
Lead	ug/L	50.0	51.9	104		88	115
Zinc	ug/L	1000	1020	102		83	119

FORM VII - IN

3050B Metals Solid Preparation

AN TE	IALYST/ CH	JEL	START DATE/TIME	671-19 0		0	ВАТСН	642442
#	CLIENT	ТҮРЕ	CLIENT ID	GCAL ID	INITIAL WGT (g)	FINAL VOL (mL)	COMMENT	STANDARDS\ REAGENTS
1	QC	MB	MB 1841866	1841866	1.75	\$D		GCAL - 8 - 250uL
2	QC	LCS	LCS 1841867	1841867	1.25			aderiz
3	4838	SAMP	WIL01IS02	21808181302	1.25			Sb,Ag,Se SPIKE - 250uL
4	4838	SAMP	WIL04IS03	21808181304	1.33			31,109-6
5	4838	SAMP	WIL04IS01	21808181305	1.35			LI,B,ZF SPIKE - 250uL
6	4838	SAMP	WIL041S02	21808181306	1.32			511,14-6
7	4612	SAMP	ADA-25X38-A03-SP07	21808210501	1-32	L		Si SPIKE - 250uL
8	QC	MS	NILOIISO2 MS	1842047	1.25	50		allis
9	QC	MSD	WILDIISD 2 MSD	1842048	1.25	1		HNO3
10								301 11-05
11								
12								alleguit
13								
14								
15						,		1:1 HNO3
16								ale. 00-6
17								
18								
19								
20								
21								
22								
23						· · · · · · · · · · · · · · · · · · ·		
24								
20								
20								Direction Vessel Lot #
21							-	192412
20								
20								-
30					L	l		

EQUIPMENT\CONDITIONS

DIGESTION BLOCK BZ	TEMPERATURE 0130	
--------------------	------------------	--

NOTES

Matrix-Soil. 6020_S_EX

XIII PREPARATION LOG

Report No:	218081813		
Prep Method:	EPA 3050B	Prep Batch:	642442

CLIENT SAMPLE ID	GCAL SAMPLE ID	PREP DATE	WEIGHT	UNITS	VOLUME	UNITS
LCS1841867	1841867	08/22/18	1.25	g	50	mL
MB1841866	1841866	08/22/18	1.25	g	50	mL
WIL01IS02	21808181302	08/22/18	1.25	g	50	mL
WIL01IS02MS	1842047	08/22/18	1.25	g	50	mL
WIL01IS02MSD	1842048	08/22/18	1.25	g	50	mL
WIL04IS01	21808181305	08/22/18	1.35	g	50	mL
WIL04IS02	21808181306	08/22/18	1.32	g	50	mL
WIL04IS03	21808181304	08/22/18	1.33	g	50	mL

.

III METHOD BLANK

Report No:	218081813		Blank ID:	MB1841866		
Instrument ID:	ICPMS1		Lab File ID:	2180823A_MS1.b\029SMPL.d		
Analyst:	LWZ			Analytical Batch:	642536	
Analysis Date:	08/23/18 Time: 1129		Analytical Method:	EPA 6020B		

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	40.0	ug/kg	U	20.0	40.0	80.0
Copper	20.0	ug/kg	Ų	10.0	20.0	40.0
Lead	20.0	ug/kg	U	10.0	20.0	40.0
Zinc	400	ug/kg	U	200	400	800

VII LABORATORY CONTROL SAMPLE

Report No:	218081813		GCAL ID:	1841867 (LCS)			
Matrix:	Solid			Instrument ID:	ICPMS1		
Analyst:	LWZ			Lab File ID:	2180823A_MS	1.b\030SMI	PL.d
Prep Date:	08/22/18	Time:	1210	Analysis Date:	08/23/18	Time:	1134
Prep Batch:	642442			Analytical Batch:	642536		
Prep Method:	3050B			Analytical Method:	EPA 6020B		

ANALYTE	UNITS	TRUE	FOUND	% R	Q	LCL	UCL
Antimony	ug/kg	4000	3820	96		72	124
Copper	ug/kg	2000	1960	98		84	119
Lead	ug/kg	2000	1990	99		84	118
Zinc	ug/kg	40000	36700	92		82	119

FORM VII - IN

V1 MS/MSD RECOVERY

Report No:	218081813		Parent Sample ID:	WIL01IS02	
Prep Method:	3050B		Parent GCAL ID:	21808181302	
Prep Date:	08/22/18 Time	: 1210	Prep Batch:	642442	
Analytical Method:	EPA 6020B		Analytical Batch:	642536	

GCAL QC ID:	1842047 MS	Instrument ID:	ICPMS1	
Analyst:	LWZ	Lab File ID:	2180823A_MS1.b\039SMPL.d	
Analysis Date:	08/23/18 1214	Dilution:	10	

ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC	LIMITS
Antimony	ug/kg	4270	0	471	11	*	72	- 124
Copper	ug/kg	2140	21100	23800	132	*	84	- 119
Lead	ug/kg	2140	63500	66800	152	*	84	- 118
Zinc	ug/kg	42700	61200	110000	114		82	- 119

GCAL QC ID: Analyst: Analysis Date:	1842048 MSD LWZ 08/23/18 1218			Instrument ID: Lab File ID: Dilution:	ICPM 21808 10	S1 323A_MS1.b\	040S	MPL.d				
ANALYTE	UNIT	SPIKE S ADDED	MSD RESULT	MSD % REC	#	% RPD	#	%R	QC L EC	.IMIT F	'S RPD)
Antimony	ug/k	g 4270	496	12	*	5		72 -	124	0	-	20
Copper	ug/k	g 2140	23500	115		2	1	84 ·	119	0	-	20
Lead	ug/k	g 2140	61100	0	*	9		84 ·	118	0	-	20
Zinc	ug/k	g 42700	112000	119		2		82 -	119	0	-	20

RPD : _____ out of _____ outside limits

Spike Recovery: <u>5</u> out of <u>8</u> outside limits

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

FORM V (PART 1) - IN

V2

POST DIGEST SPIKE SAMPLE RECOVERY

Report No:	218081813		GCAL PDS ID:	1842322
Matrix:	Solid		Parent Sample ID:	WIL01IS02 (21808181302)
Analyst:	LWZ		Instrument ID:	ICPMS1
Analysis Date:	08/23/18	Time: <u>1222</u>	Lab File ID:	2180823A_MS1.b\041SMPL.d
Analytical Method:	EPA 6020B		Analytical Batch:	642536

ANALYTE	UNITS	SPIKED SAMPLE RESULT	С	SAMPLE RESULT	с	SPIKE ADDED	% R	Q	LCL	UCL
Antimony	ug/kg	38600		0	U	42700	90		80	120
Copper	ug/kg	40700		21100		21400	92		80	120
Lead	ug/kg	84900		63500		21400	100		80	120
Zinc	ug/kg	478000		61200		427000	97		80	120

FORM V (PART 2) - IN

IX SERIAL DILUTIONS

Report No:	218081813		GCAL SD ID:	1842323	
Matrix:	Solid		Parent Sample ID:	WIL01IS02 (21808181302)	
Analyst:	LWZ		Instrument ID:	ICPMS1	
Analysis Date:	08/23/18 Time:	1227	Lab File ID:	2180823A_MS1.b\042SMPL.d	
Analytical Method:	EPA 6020B		Analytical Batch:	642536	

ANALYTE	UNITS	PARENT SAMPLE RESULT	с	SERIAL DILUTION RESULT	С	% DIFF	Q	LCL	UCL
Antimony	ug/kg	0	U	2150	J				
Copper	ug/kg	21000		22200		5.7	1	0	10
Lead	ug/kg	63500		62500		1.6		0	10
Zinc	ug/kg	61200		63600		3.9		0	10

3050B Metals Solid Preparation

	ALYST/ CH	JU.	START DATE/TIME	15 Q2151	B END DATE/TIME	1:15	BATCH	642531
#	CLIENT	TYPE	CLIENT ID	GCAL ID	INITIAL WGT (g)	FINAL VOL (mL)	COMMENT	STANDARDS\ REAGENTS
1	QC	MB	MB 1842310	1842310	1.19	50_		GCAL - 8 - 250uL
2	QC	LCS	LCS 1842311	1842311	1-25			7176918
3	4957	SAMP	A013 D1 (0-1)	21808223401	.33			Sb,Ag,Se SPIKE - 250uL
4	4957	SAMP	A013 D1 (1-2)	21808223402	1.25			BIL 15-C
5	4957	SAMP	A013 D1 (2-3)	21808223403	1.46			LI,B,Zr SPIKE - 250uL
6	4838	SAMP	WIL03IS01	21808181301	1.35			7314 Ule-C
7	4838	SAMP	WIL03IS02	21808181308	.78			Si SPIKE - 250uL
8	4838	SAMP	WIL02IS01	21808181401	1.25			Jacelis
9	4838	MS	WIL02IS01 MS	21808181402	1.25			HNO3
10	4838	MSD	WIL02IS01 MSD	21808181403	125			301-11-14
11	4838	SAMP	WIL02IS02	21808181404	1.31			
12	4838	SAMP	WIL01IS03	21808181405	140			2124991
13	4838	SAMP	WIL01/S01	21808181406	1-2Le			HOL
14	4838	SAMP	WIL02IS03	21808181407	1.34			N/H
15	4838	SAMP	WIL031S03	21808181307	t.24	N N		1:1 HNO3
16								17478-2
17								
18								
19								
20		ē						
21								
22								
23								
24								
25								
26								
27								Digestion Vessel Lot #
28								180501
29	_							
30				L				

EQUIPMENT\CONDITIONS

TEMPERATURE 94	

NOTES

Matrix-Soil. 6020_S_EX

XIII PREPARATION LOG

Report No:	218081813		
Prep Method:	EPA 3050B	Prep Batch:	642531

CLIENT SAMPLE ID	GCAL SAMPLE ID	PREP DATE	WEIGHT	UNITS	VOLUME	UNITS
LCS1842311	1842311	08/25/18	1.25	g	50	mL
MB1842310	1842310	08/25/18	1.25	g	50	mL
WIL02IS01 MS	21808181402	08/25/18	1.25	g	50	mL
WIL02IS01 MSD	21808181403	08/25/18	1.25	g	50	mL
WIL03IS01	21808181301	08/25/18	1.35	g	50	mL
WIL03IS02	21808181308	08/25/18	1.28	g	50	mL
WIL03IS03	21808181307	08/25/18	1.26	g	50	mL

XIII PREPARATION LOG

Repoir No.	218081814

Prep Method:

EPA 3050B

Prep Batch: 642531

CLIENT SAMPLE ID	GCAL SAMPLE ID	PREP DATE	WEIGHT	UNITS	VOLUME	UNITS
LCS1842311	1842311	08/25/18	1.25	g	50	mL
MB1842310	1842310	08/25/18	1.25	g	50	mL
WIL01IS01	21808181406	08/25/18	1.26	g	50	mL
WIL01IS03	21808181405	08/25/18	1.4	g	50	mL
WIL02IS01	21808181401	08/25/18	1.25	g	50	mL
WIL02IS01 MS	21808181402	08/25/18	1.25	g	50	mL
WIL02IS01 MSD	21808181403	08/25/18	1.25	g	50	mL
WIL02IS02	21808181404	08/25/18	1.31	g	50	mL
WIL02IS03	21808181407	08/25/18	1.34	g	50	mL

III METHOD BLANK

Report No:	218081813		Blank ID:	MB1842310	
Instrument ID:	ICPMS2		Lab File ID:	2180828B_MS2.b\1836SMPL_2180828A_MS2.D	
Analyst:	LWZ			Analytical Batch:	642829
Analysis Date:	08/28/18	Time:	1247	Analytical Method:	EPA 6020B

ANALYTE	RESULT	UNITS	Q	DL	LOD	LOQ
Antimony	40.0	ug/kg	U	20.0	40.0	80.0
Copper	20.0	ug/kg	U	10.0	20.0	40.0
Lead	20.0	ug/kg	U	10.0	20.0	40.0
Zinc	400	ug/kg	U	200	400	800

VII LABORATORY CONTROL SAMPLE

Report No:	218081813		GCAL ID:	1842311 (LCS)				
Matrix:	Solid		Instrument ID:	ICPMS2				
Analyst:	LWZ			Lab File ID:	2180828B_MS	2.b\1837SMPL_2180828A_MS2.D		
Prep Date:	08/25/18	Time:	0815	Analysis Date:	08/28/18	Time: 1250		
Prep Batch:	642531			Analytical Batch:	642829			
Prep Method:	3050B			Analytical Method:	EPA 6020B			

ANALYTE	UNITS	TRUE	FOUND	% R	Q	LCL	UCL
Antimony	ug/kg	4000	4190	105		72	124
Copper	ug/kg	2000	2010	101		84	119
Lead	ug/kg	2000	2030	102		84	118
Zinc	ug/kg	40000	40300	101		82	119

FORM VII - IN

-

V1 MS/MSD RECOVERY

218081814	Parent Sample ID:	WIL02IS01
EPA 3050B \ ISM	Parent GCAL ID:	21808181401
08/25/18 Time: 0815	Prep Batch:	642531
EPA 6020B	Analytical Batch:	642829
	218081814 EPA 3050B \ ISM 08/25/18 Time: 0815 EPA 6020B	218081814 Parent Sample ID: EPA 3050B \ ISM Parent GCAL ID: 08/25/18 Time: 0815 Prep Batch: EPA 6020B Analytical Batch:

GCAL QC ID:	21808181402 MS	Instrument ID:	ICPMS2
Analyst:	LWZ	Lab File ID:	2180828B_MS2.b\1844SMPL_2180828A_MS2.D
Analysis Date:	08/28/18 1315	Dilution:	10

ANALYTE	UNITS	SPIKE ADDED	SAMPLE RESULT	MS RESULT	MS % REC	#	QC	LIMITS	S
Antimony	ug/kg	4690	0	315	7	*	72	-	124
Copper	ug/kg	2340	38400	40000	67	*	84	-	119
Lead	ug/kg	2340	15800	18400	109		84	-	118
Zinc	ug/kg	46900	88500	136000	101		82	(m)	119

GCAL QC ID: Analyst: Analysis Date:	21808181403 MSD LWZ 08/28/18 1319			Instrument ID: Lab File ID: Dilution:	ICPMS 21808 10	32 28B_MS2.1	o\1845	SMPL_218082	8A_MS2.D
ANALYTE	UNITS	SPIKE ADDED	MSD RESULT	MSD % REC	#	% RPD	#	QC L %REC	IMITS RPD
Antimony	ug/kg	4690	361	8	1 * 1	14		72 - 124	0 - 20
Copper	ug/kg	2340	39900	66	*	0		84 - 119	0 - 20
Lead	ug/kg	2340	17600	75	1 + 1	4		84 - 118	0 - 20
Zinc	ug/kg	46900	133000	95		2		82 - 119	0 - 20

 RPD :
 0
 out of
 4
 outside limits

 Spike Recovery:
 5
 out of
 8
 outside limits

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

FORM V (PART 1) - IN

V2

POST DIGEST SPIKE SAMPLE RECOVERY

Report No:	218081814	GCAL PDS ID:	1843727
Matrix:	Solid	Parent Sample ID:	WIL02IS01 (21808181401)
Analyst:	LWZ	Instrument ID:	ICPMS2
Analysis Date:	08/28/18 Time: 1322	Lab File ID:	2180828C_MS2.b\1846SMPL_2180828A_MS2.D
Analytical Method:	EPA 6020B	Analytical Batch:	642829

ANALYTE	UNITS	SPIKED SAMPLE RESULT	с	SAMPLE RESULT	с	SPIKE ADDED	% R	Q	LCL	UCL
Antimony	ug/kg	47000		0	U	46900	100		80	120
Copper	ug/kg	61200		38400		23400	97		80	120
Lead	ug/kg	38400		15800		23400	96	<u> </u>	80	120
Zinc	ug/kg	553000		88500		469000	99		80	120

IX SERIAL DILUTIONS

Report No:	218081814	GCAL SD ID:	1843728
Matrix:	Solid	Parent Sample ID:	WIL02IS01 (21808181401)
Analyst:	LWZ	Instrument ID:	ICPMS2
Analysis Date:	08/28/18 Time: 1326	Lab File ID:	2180828C_MS2.b\1847SMPL_2180828A_MS2.D
Analytical Method:	EPA 6020B	Analytical Batch:	642829

ANALYTE	UNITS	PARENT SAMPLE RESULT	с	SERIAL DILUTION RESULT	с	% DIFF	Q	LCL	UCL
Antimony	ug/kg	0	U	0	U				
Copper	ug/kg	38400		40100		4.4		0	10
Lead	ug/kg	15900		15900	_	0		0	10
Zinc	ug/kg	88500		88300		.2		0	10

Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time
21808181206	WIL02DA02A	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181207	WIL02DA02A MS	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181208	WIL02DA02A MSD	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181209	WIL02DA01A	Solid	08/16/2018 09:30	08/18/2018 10:45
21808181210	WIL02DA01B	Solid	08/16/2018 09:35	08/18/2018 10:45
21808181213	WIL02DA02A (RE)	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181214	WIL02DA02A MS (RE)	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181215	WIL02DA02A MSD (RE)	Solid	08/16/2018 10:20	08/18/2018 10:45
21808181216	WIL02DA01A (RE)	Solid	08/16/2018 09:30	08/18/2018 10:45
21808181217	WIL02DA01B (RE)	Solid	08/16/2018 09:35	08/18/2018 10:45

Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21808181301	WIL03IS01	Solid	08/14/2018 16:00	08/18/2018 10:45	
21808181302	WIL011S02	Solid	08/14/2018 13:50	08/18/2018 10:45	
21808181303	WIL031S00	Water	08/16/2018 08:20	08/18/2018 10:45	
21808181304	WIL04IS03	Solid	08/15/2018 16:10	08/18/2018 10:45	
21808181305	WIL04IS01	Solid	08/15/2018 16:00	08/18/2018 10:45	
21808181306	WIL04IS02	Solid	08/15/2018 16:05	08/18/2018 10:45	
21808181307	WIL03IS03	Solid	08/14/2018 16:10	08/18/2018 10:45	
21808181308	WIL03IS02	Solid	08/14/2018 16:05	08/18/2018 10:45	

Sample Summary

GCAL ID	Client ID	Matrix	Collect Date/Time	Receive Date/Time	
21808181401	WIL02IS01	Solid	08/15/2018 12:00	08/18/2018 10:45	
21808181402	WIL02IS01 MS	Solid	08/15/2018 12:00	08/18/2018 10:45	
21808181403	WIL02IS01 MSD	Solid	08/15/2018 12:00	08/18/2018 10:45	
21808181404	WIL02IS02	Solid	08/15/2018 12:10	08/18/2018 10:45	
21808181405	WIL01IS03	Solid	08/14/2018 14:00	08/18/2018 10:45	
21808181406	WIL01IS01	Solid	08/14/2018 13:40	08/18/2018 10:45	
21808181407	WIL02IS03	Solid	08/15/2018 12:20	08/18/2018 10:45	

Case Narrative

Client: AECOM Report: 218081812

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1 as specified in the contract.

PROJECT MANAGER COMMENTS

Per Jennifer Li's email on 10/5/18, hold samples do not need to be analyzed. (Amanda Cobb 10/05/2018 10:30)

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

In the EPA 8330B analysis for prep batch 642698, the MS/MSD exhibited RPD failures. The LCS and/or LCSD (standard reference material) recoveries for all analytes were below the lower DOD control limit. The LCS/LCSD exhibited RPD failures. All samples were re-extracted outside holding time in prep batch 643342. The recovery for the surrogate is below the lower control limit for the LCSD (1843191).

In the EPA 8330B analysis for prep batch 643342, all samples were outside the holding time. The samples are reported as samples 21808181213-21808181217 with (RE) added to the client ID. The MS/MSD exhibited recovery and RPD failures. The LCS and/or LCSD (standard reference material) recoveries are above the upper control limit for 1,3,5-Trinitrobenzene, 1,3-Dinitrobenzene, 3-Nitrotoluene, 4-Nitrotoluene, and Pentaerythritol Tetranitrate. These analytes werre not detected in the associated samples. The LCS/LCSD recoveries are 0% for Tetryl. This is a poor performing analyte.

METALS

In the EPA 6020B analysis for prep batch 642222, the MS and/or MSD recovery is outside the control limits for Antimony and Zinc. The LCS recovery is within control limits. This indicates the analysis is in control and the sample is affected by matrix interference or the element is non-homogeneous in the sample. A post-digestion spike was performed. The MS/MSD recoveries and RPD are not applicable for Copper and Lead because the sample concentration is greater than four times the spike concentration. Zinc is flagged E on the serial dilution form due to the fact that the % difference between the original result and the serial dilution result for the batch QC sample is greater than 10.

Case Narrative

Client: AECOM Report: 218081813

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1 as specified in the contract.

METALS

In the EPA 6020B analysis for prep batch 642442, the MS and/or MSD recovery is outside the control limits for Antimony. The LCS recovery is within control limits. This indicates the analysis is in control and the sample is affected by matrix interference or the element is non-homogeneous in the sample. A post-digestion spike was performed. The MS/MSD recoveries and RPD are not applicable for Copper and Lead because the sample concentration is greater than four times the spike concentration.

Case Narrative

Client: AECOM Report: 218081814

Gulf Coast Analytical Laboratories received and analyzed the sample(s) listed on the Report Sample Summary page of this report. Receipt of the sample(s) is documented by the attached chain of custody. This applies only to the sample(s) listed in this report. No sample integrity or quality control exceptions were identified unless noted below.

This report was completed in accordance with DOD QSM 5.1 as specified in the contract.

HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

In the EPA 8330B analysis for prep batch 642680, the LCS/LCSD RPD is above the control limit for 4-Nitrotoluene. All recoveries are acceptable.

METALS

In the EPA 6020B analysis for prep batch 642531, the MS and/or MSD recovery is outside the control limits for Antimony. The LCS recovery is within control limits. This indicates the analysis is in control and the sample is affected by matrix interference or the element is non-homogeneous in the sample. A post-digestion spike was performed. The MS/MSD recoveries and RPD are not applicable for Copper and Lead because the sample concentration is greater than four times the spike concentration.

Q Flag Summary

Method: EPA 8330B	Analysis Date: 9/13/2018 5:40:10 AM							
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL		
1,3,5-Trinitrobenzene	99-35-4		X			1		
1,3-Dinitrobenzene	99-65-0		X					
2,4,6-Trinitrotoluene	118-96-7		X		1			
2,4-Dinitrotoluene	121-14-2	1	X			1		
2,6-Dinitrotoluene	606-20-2		X			1		
2-Amino-4,6-dinitrotoluene	35572-78-2		X	1		1		
2-Nitrotoluene	88-72-2		X			1		
3,5-Dinitroaniline	618-87-1		X	1		ĺ		
3-Nitrotoluene	99-08-1		X					
4-Amino-2,6-dinitrotoluene	19406-51-0		X	1	1	1		
4-Nitrotoluene	99-99-0		X					
HMX	2691-41-0		X			İ		
Nitrobenzene	98-95-3		X					
Nitroglycerin	55-63-0		X			1		
Pentaerythritol Tetranitrate	78-11-5	1	X		1	1		
RDX	121-82-4		X			ĺ		
Tetryl	479-45-8		X					

Client Sample ID: WIL02DA02A

Lab Sample ID: 21808181206

Client Sample ID: WIL02DA01A Lab Sample ID: 21808181209

Method: EPA 8330B Analysis Date: 9/13/2018 6:39:30 AM									
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL			
1,3,5-Trinitrobenzene	99-35-4		Х			1			
1,3-Dinitrobenzene	99-65-0		X						
2,4,6-Trinitrotoluene	118-96-7		Х						
2,4-Dinitrotoluene	121-14-2		X		1	1			
2,6-Dinitrotoluene	606-20-2		Х						
2-Amino-4,6-dinitrotoluene	35572-78-2		Х			-			
2-Nitrotoluene	88-72-2		X						
3,5-Dinitroaniline	618-87-1		Х						
3-Nitrotoluene	99-08-1		Х			1			
4-Amino-2,6-dinitrotoluene	19406-51-0		Х						
4-Nitrotoluene	99-99-0		Х						
HMX	2691-41-0		Х		-				
Nitrobenzene	98-95-3		Х						
Nitroglycerin	55-63-0		Х		1				
Pentaerythritol Tetranitrate	78-11-5		Х		İ				
RDX	121-82-4		Х		1				
Tetryl	479-45-8		X			Ì			

Client Sample ID: WIL02DA01B Lab Sample ID: 21808181210

Method: EPA 8330B	Analysis Date: 9/13/2018 6:59:16 AM							
Analyte	CAS	CCV OUL LCS/LCSD OUL SURROGATE OUL IS OUL CLCCV O						
1,3,5-Trinitrobenzene	99-35-4		X					
1,3-Dinitrobenzene	99-65-0		X					
2,4,6-Trinitrotoluene	118-96-7		X			1		
2,4-Dinitrotoluene	121-14-2	1	X					
2,6-Dinitrotoluene	606-20-2		X					
2-Amino-4,6-dinitrotoluene	35572-78-2		X	-		Ì		
2-Nitrotoluene	88-72-2		X					
3,5-Dinitroaniline	618-87-1		X			1		
3-Nitrotoluene	99-08-1		X	1				
4-Amino-2,6-dinitrotoluene	19406-51-0		X					

4-Nitrotoluene	99-99-0	X	
HMX	2691-41-0	X	
Nitrobenzene	98-95-3	X	
Nitroglycerin	55-63-0	X	
Pentaerythritol Tetranitrate	78-11-5	X	
RDX	121-82-4	X	
Tetryl	479-45-8	X	

Client Sample ID: WIL02DA02A (RE) Lab Sample ID: 21808181213

Method: EPA 8330B	Analysis Date: 9/13/2018 8:18:22 AM								
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL			
1,3,5-Trinitrobenzene	99-35-4		X						
3-Nitrotoluene	99-08-1		X						
4-Nitrotoluene	99-99-0		X		Î				
Pentaerythritol Tetranitrate	78-11-5		X		Ī				
Tetryl	479-45-8		X		1				

Client Sample ID: WIL02DA01A (RE) Lab Sample ID: 21808181216

Method: EPA 8330B	Analysis Date: 9/13/2018 9:17:42 AM								
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL			
1,3,5-Trinitrobenzene	99-35-4		X		1				
3-Nitrotoluene	99-08-1		X						
4-Nitrotoluene	99-99-0		X						
Pentaerythritol Tetranitrate	78-11-5		X		1				
Tetryl	479-45-8		X						

Client Sample ID: WIL02DA01B (RE) Lab Sample ID: 21808181217

Method: EPA 8330B	Analysis	Date: 9/13	8/2018 9:37:28 /	AM		
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL
1,3,5-Trinitrobenzene	99-35-4		X		1	
3-Nitrotoluene	99-08-1		X			
4-Nitrotoluene	99-99-0		X		1	
Pentaerythritol Tetranitrate	78-11-5		X			
Tetryl	479-45-8		X			

CCV OUL=CCV out of limits LCS/LCSD OUL=LCS/LCSD out of limits SURROGATE OUL=Surrogate out of limits IS OUL=Internal Standard out of limits CLCCV OUL=Closing CCV out of limits

Q Flag Summary

Client Sampl	e ID: N	/IL02IS	01 Lab Sa	mple ID: 21808	18140)1	
Method: EPA	8330E	Analys	sis Date: 8/30/	2018 5:41:00 PM			
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV	OUL
4-Nitrotoluene	99-99-0		Х		1	T	

Client Sample ID: WIL02IS02 Lab Sample ID: 21808181404

Method: EPA	A 8330B	Analy:	sis Date: 8/30/2	018 6:40:20 PM		
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL
4-Nitrotoluene	99-99-0		X			

Client Sample ID: WIL02IS03 Lab Sample ID: 21808181407

Method: EPA	A 8330E	Analy:	sis Date: 8/30/2	018 7:00:07 PM		
Analyte	CAS	CCV OUL	LCS/LCSD OUL	SURROGATE OUL	IS OUL	CLCCV OUL
4-Nitrotoluene	99-99-0		X			

CCV OUL=CCV out of limits LCS/LCSD OUL=LCS/LCSD out of limits SURROGATE OUL=Surrogate out of limits IS OUL=Internal Standard out of limits CLCCV OUL=Closing CCV out of limits

ANALYTICAL LABORATORIES. LLC		SAMPLE RECEIVING CHECKLIST	* 2 1 8 0	8 1 8	* m
SAMPLE DELIVERY GROU	JP 218081813	CHECKUST	*	S	2
Client PM AEC 4838 - AECOM	Transport Method FEDEX	Samples received with proper thermal preservation?		2	
		Radioactivity is <1600 cpm? If no, record cpm value in notes section.		>	
Profile Number	Received By Savare Tiffanv R	COC relinquished and complete (including sampleIDs, collect times, and s	mpler)?	Σ	
		All containers received in good condition and within hold time?		Σ	
Line Item(s)	Receive Date(s)	All sample labels and containers received match the chain of custody?		5	
1 - Iowi- Explosives/wetais 3 - Water	00/10/10	Preservative added to any containers?	L		5
		If received, was headspace for VOC water containers < 6mm?		>	
		Samples collected in containers provided by GCAL?			>
COOLERS		DISCREPANCIES LAB PRESERVATION			
Airbill Thermomet	er ID: E29 Temp ^o	C None None			
7823-5315-3431	3.2 2.4 1.9				
NOTES	-				
Revision 1.6				R.	je 1 of 1

GCAL Report#: 218081813

Page 306 of 306

AMALTICAL LABORATORIES, LLC			SAMPLE RECEIVING CHECKLIST			-
SAMPLE DELIVERY GROU	JP 2180818	14	CHECKLIST		YES	Ŷ
Client PM AEC 4838 - AECOM	Transport Mi HEDEX	ethod	Samples received with proper thermal preservation?		>	
			Radioactivity is <1600 cpm? If no, record cpm value in notes s	section.	>	
Profile Number	Received By Savaria Tiffiam	۵ ۲	COC relinquished and complete (including sampleIDs, collect	times, and sampler)?	Σ	
			All containers received in good condition and within hold time?	2	>	
Line Item(s)	Receive Date	(s)	All sample labels and containers received match the chain of (custody?	>	
1 - ISM - Explosives/Metals	08/18/18		Preservative added to any containers?			>
			If received, was headspace for VOC water containers < 6mm?		Σ	
			Samples collected in containers provided by GCAL?			>
COOLERS			DISCREPANCIES LAB PRE	SERVATIONS		
Airbill Thermome	ter ID: E29	Temp °C	None None			
7823-5315-3431		3.2 2.4 1.9				
NOTES	r					
Revision 1.6					4	ge 1 of 1

GCAL Report#: 218081814

ļ

Page 214 of 214

Page 1 of 1 2 Σ KES $\mathbf{\Sigma}$ > > > > $\mathbf{>}$ > COC relinquished and complete (including sampleIDs, collect times, and sampler)? LAB PRESERVATIONS All sample labels and containers received match the chain of custody? Radioactivity is <1600 cpm? If no, record cpm value in notes section. All containers received in good condition and within hold time? If received, was headspace for VOC water containers < 6mm? None SAMPLE RECEIVING CHECKLIST Samples collected in containers provided by GCAL? Samples received with proper thermal preservation? Preservative added to any containers? DISCREPANCIES CHECKLIST None Temp °C Transport Method FEDEX **Received By** Savage, Tiffany R 1.9 3.2 24 Receive Date(s) 08/18/18 SAMPLE DELIVERY GROUP 218081812 Thermometer ID: E29 PM AEC Line Item(s) 2 - S-Metals/Explosives Profile Number 277537 C ANALYTICAL 7823-5315-3431 4838 - AEDOM COOLERS Revision 1.6 NOTES Client Airbill

GCAL Report#: 218081812

Page 287 of 287

3
-
œ
-
œ
0
Ô
-
\sim
4.
£
<u>-</u>
Υ.
0
S.
≃
-
<
C)
ñ.
~

	ļ		
e			
8			
381			
18(
5			
Ŧ			
Ř			
A			
5	1		
-	-		

Clean	-					-	1	CCIEN	1 HAN	- CV	тяоч	AL RE		мэпс	HITE: C	-M		1						
Client ID: 4838 - AECOM SDG: 218081813	PM: AEC & Method	Custody Seal	used gyes D no	Transact up yes D no Ut	33,38,45 LPM	C Dissolved Analysis Requested	C Field filtered	Preservative			1	<u>q</u> -	7	<u> </u>			8							nitees, you agree to GCAL's terms and our most recent schedule of services.
JSTODY RECORD	Analytical Requests	1/20/	(17 27 45 1 1 1 1 1 1 1 1 1 1 1 1 1	(90 <u>8</u>)	E8)	डक्र त्रथ्य	<u>ح</u> مامی المالیا المالیا	No Con- tribuers		X	1 × 1	X	X	1 X	1 X	- X -					Indard (Per Contract/Quote)	Dote: Tener Note:	2014, 100 June 100 Ju	Conditions on the second of the second secon
CHAIN OF CI	Bill to:	Client:	He Same as	Phone: Kelocit H	000 E-mail:	A LTA # 1005 209510		sample Description	WILD3 ISO 1	WILO1 ISO2	WIL 03 IS 00	WILL OF ISO3	ILLOH ISOL	VILO4 I SO2	41103TS03	IL031502				3431	h* 🗆 48h* 🛄 3 days* 🔲 1 week* 🔏 Str	S [[OO Processed by: (Signature)	8 1/045 Received by Advisor	"Requires prior approval, rush c
TOR ES. LL		PenterD	1D 208	077 H	ecom, (11:54		Grab			X		4000	-		2			1	515-	ys): 🗆 24	100	8/18/1	= tissue
LABORAT LABORAT Baton Roug	ort to:	actual	N. Mar	0-3	-1-ea	3		Comp	X	X		X	X	X	X	X			T	10	ness Day			= liquid, T
ALVTICAL Park Dr., E 900 • Fax	Rep	In OCI	mant	28-10	nitere			Time (2400)	1600	1350	0820	1610	1600	1605	16(0	1605				1872	ne (Busi		X	= solid, L
AN NOVATION F	AF.	nt: ACI	E	ne: A	nail: jen		d By:	Date	81-11-8	81-11-18	81-91-8	8-15-18	8-12-68	8-15-18	8-4-8	81-11-8				No:	12 plind		Y (Signature)	= water, S
7979 hu		Addr		Pho	Ц ЧЧ ЧЧ ЧЧ		Sample	Matrix ¹	Soll	SOTL	WITTER	Ser	SOFL	SOT	TIQS	20D				Air Bill (Turn	A	V V	Antrix': W

Page 305 of 306
1814 HILL HILL HILL HILL HILL HILL HILL HIL	GCAL use only: Custody Seal used (b yes C no intact (b yes C no	Temperature °C 3,2,3,4,1,9 33,38,45 CPM	 Dissolved Analysis Requested Field filtered Lab filtered 	Preservative	mS/mSD extra volume	<u>1900</u>		1 J		HITE:					e coolers	IL & 2 IS 0.1 Outs terms and observes.	changes. Please email written changes to your PM.
RD Client ID: 48 SDG: 21808 PM: AEC	I Requests & Method														ote: 1 of 4 Sample	S (MSD from W submitting insee samples, you agree to Of obtitions contained in our most recent aches	We cannot accept verbal
тору Весо	Analytica Analytica کم رهه	(8330B) (80308)	522/100/04-51 522/100/04-51 522/100/04-51	Mo Con- tainers	1 X X	$1 \times \times$	1 X	1 X	$1 \times X$					Indard (Per Contract/Quote)	Danor Virnet. No	Date Date Date Date 1 mm 1 mm	haroes may apply.
CHAIN OF CUS	Bill to: lient: למיתפ, מש	ontact: <u>"I Areport to : "</u> Phone:	£ 60520956	sription	1501	T502	503	LISOL	ISOS					3h* 🗆 3 days* 🗖 1 week* 🗙 Sta	DOD Received by: (Suproture)	45 Records to Carpone of Manual	"Ramines prior approval, rush ci
ALES, LLC LLZ 70820-7402 117 • www.gcat.com	De Center Dr. A.	176 Jaecom.com	ston LTA, 4	Grab Sample Desc	207IM	WELO2	[TO]]TM	MTLOI	MILLO2		44-12		315-3431	ays): [] 24h* [] 4i	11 21 12/2	Dates 1/8/18/10	d T - dimostra
ANALYTICAL LABORATO ON Park Dr., Baton Rouge 38.4900 • Fax: 225,767.57	FECOM 12420 M.lesho 1420 Fermation	Jennifer Li 301-820-31 Jennifer j. lig	Project N	ate Time Comp (2400)	15-18 1200 X	× 012/8-51	X 0011 8-41	H-18 1340 X	6-18 1220 ×				5-2601 :	und Time (Business D	Safrance)	(Signature)	chind a 1 biles - 2
7979 Innovatik Phone: 225.76	Client: Address:	Contact: Phone: E-mail:	P.O. Number Sampled By:	Matrix ¹ D	SOTL &	SOTL 8-	8 11.03	SOTL 8-	5011 8-				Air Bill No	Turn Aro	Province	Palinguation by	

Page 213 of 214

GCAL Report#: 218081814

l

SDG: 218081812 PM: AEC	Agalytical Requests & Method GCAL use only:	used by yes 0 no 624 intact 0 yes 0 no 624	33, 38, 45 CAM	Dissolved Analysis Requested			X Hold pending 15m Result	X Held C.	X I Itold "	Hold vending "DA" result-	Image in the second sec	-643					act/Quote)	Mote: WELOZDAOZA is an MS/MSD	Total State
	~2 ¹ 90	almias (80	0209)	SAVIS 2140M	1949 1949	No Con- tainers	7	2	-	2 XX	2 X X	6 XX	2 XX	2 X X			ndard (Per Contra	[Date 13	8/18/18 1
1 kG 10820-7402 www.gcal.com	Bill to: Client:	C Dr. 51.16 Address: Some as 876 ("Report to:" contact:	Phone:	Number # 60520956		3 Sample Description	WILO3×18E	WIL02×22 E	WILLO1X21E	WILO2 DBO2A	WILLOZ DBOILA	WILO2 VA 02 A	WILOZDAOIA	WILOZ DA O18		3 15 - 3431	🗆 24h* 🗆 48h* 🗆 3 days* 🗆 1 week* 💆 Ste	17/17/18/11.00	118/18/18/10/245 Record by Hydrow Am
15717 - V		Center	Dat	it Name/N		Grab	X	X	X	X	X	X	X	X		5	Days):	Nata	Date:
ation Rot 225.787 32.225.787	port to:	ileston	5-347	Projec		Comp					0		-			33	usiness		
Park Dr., E 1900 • Fax	COM	Manton norther	col-820			, Thme (2400)	8 1100	8 0920	8 1115	F 1030	8 0950	0201 &	18 0930	8 0935		- L	Tyme (B	(0.0)	KK I
A) novation 225.769.4	ant: AE	dress: 17 fact: Je	none:	Vumber	oled By:	ix ¹ Date	1-9-19-7	8-4-1	-91-8 7	L 8-16-	F918 7	1 86	-9-8 7	1-91-87		3ill No:	Mongo	and plants	ALL A
PP 11	-	ğ ö	άú	õ	dura	fathi	U	K	8	8	R	5	6	0		1. H	Iun	N	interes .

Page 286 of 287

Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision-making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic (January 2017) Data Review.

Flag	Interpretation
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but not detected at a level greater than or equal to the level of the adjusted Detection Limit (DL) for sample and method.
J +	Inorganic analyte present. Reported value may not be accurate or precise, but the result may be biased high.
-ſ	Inorganic analyte present. Reported value may not be accurate or precise, but the result may be biased low.
ſ	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the Limit of Detection (LOD).
ſΝ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
ſŊ	The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
С	This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by gas Chromatograph/Mass Spectrometer (GC/MS)
Х	This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful.

Data Validation Flags

			keason Codes		
GC/M	IS Organics	GC and	HPLC Organics	Inorga	nics and Conventionals
Code	Interpretation	Code	Interpretation	Code	Interpretation
а	Incorrect or incomplete analytical sequence	a	Incorrect or incomplete analytical sequence	а	Incorrect or incomplete analytical sequence
p	Bubble found in vial >6mm	р	Instrument performance failure	p	Laboratory duplicate imprecision
с	Calibration failure; poor or unstable response	с	Calibration failure; poor or unstable response	с	Calibration failure
р	MS/MSD imprecision	р	MS/MSD imprecision	р	MS/MSD imprecision
e	LCSD imprecision	е	LCSD imprecision	е	LCSD imprecision
f	Field duplicate imprecision	f	Field duplicate imprecision	f	Field duplicate imprecision
ы	Tuning failure or poor mass spec performance	20	Dual column confirmation imprecision	50	Duel isotope imprecision
h	Holding time violation	h	Holding time violation	h	Holding time violation
i	Internal standard failure	i	Internal standard failure	k	Cooler receipt temperature exceeds limits
k	Cooler receipt temperature exceeds limits	k	Cooler receipt temperature exceeds limits	1	LCS recovery failure
1	LCS recovery failure	1	LCS recovery failure	ш	MS/MSD recovery failure
ш	MS/MSD recovery failure	ш	MS/MSD recovery failure	u	ICS failure
d	Poor chromatography	d	Poor chromatography	0	Calibration blank contamination
q	Concentration exceeded the linear range	d	Concentration exceeded the linear range	q	Concentration exceeded the linear range
r	Linearity failure in initial calibration	r	Linearity failure in initial calibration	r	Linearity failure in calibration or MSA
s	Surrogate failure	S	Surrogate failure	S	Serial dilution failure
t	TIC	t	Blender blank contamination	t	Carboy Lot detection
W	Identification criteria failure	n	No confirmation column	n	BOD minimum depletion did not exceed 2mg/L
х	Field blank contamination	w	Retention time failure	v	Post-digestion spike failure
y	Trip blank contamination	х	Field blank contamination	W	CRDL Standard Failure
z	Method blank contamination	z	Method blank contamination	Х	Field blank contamination
				Ζ	Preparation/Method blank contamination

The other type of code used by URS is a "Reason Code". The reason code indicates the type of quality control failure that led to the application of the data validation flag. 7 ζ è